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“The total worldwide mobile traffic is expected to increase 33× from
2010–2020.1”

“The average 3G smart phone user consumed 375 MB/month. The average 3G
broadband (HSPA/+) user consumed 5 GB/month. The average LTE

consumer used 14–15 GB/month of data.2”

1Source: IDATE for UMTS Forum
2Press release of a Scandinavian operator (Nov. 2010)
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Network densification
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The exploding demand for wireless data traffic requires a massive network
densification:

Densification: “Increasing the number of antennas per unit area”
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“David vs Goliath“ or ”Small Cells vs Massive MIMO“

How to densify: “More antennas or more BSs?”

Questions:

I Should we install more base stations or simply more antennas per base?

I How can massively many antennas be efficiently used?

I Can massive MIMO simplify the signal processing?
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Vision

Bell Labs lightradio antenna module – the 
next generation small cell 
(picture from www.washingtonpost.com)



A thought experiment

Consider an infinite large network of randomly uniformly distributed base
stations and user terminals.

What would be better?

A 2 × more base stations

B 2 × more antennas per base station

Stochastic geometry can provide an answer.
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System model: Downlink

Received signal at a tagged UT at the origin:

y =
1

r
α/2
0

hH
0 x0︸ ︷︷ ︸

desired signal

+
∞∑
i=1

1

r
α/2
i

hH
i xi︸ ︷︷ ︸

interference

+ n

I hi ∼ CN (0, IN ): fast fading channel vectors

I ri : distance to ith closest BS

I P = E
[
xH

i xi

]
: average transmit power constraint per BS

Assumptions:

I infinitely large network of uniformly randomly distributed BSs and UTs
with densities λBS and λUT, respectively

I single-antenna UTs, N antennas per BS

I each UT is served by its closest BS

I distance-based path loss model with path loss exponent α > 2

I total bandwidth W , re-used in each cell
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Transmission strategy: Zero-forcing

Assumptions:

I K = λUT
λBS

UTs need to be served by each BS on average

I total bandwidth W divided into L ≥ 1 sub-bands

I K = K/L ≤ N UTs are simultaneously served on each sub-band

Transmit vector of BS i :

xi =

√
P

K

K∑
k=1

wi,k si,k

I si,k ∼ CN (0, 1): message determined for UT k from BS i

I wi,k ∈ CN×1
: ZF-beamforming vectors
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Performance metric: Average throughput
Received SINR at tagged UT:

γ =
r−α0

∣∣hH
0 w0,1

∣∣2∑∞
i=1 r−αi

∑K
k=1

∣∣hH
i wi,k

∣∣2 + K
P

=
r−α0 S∑∞

i=1 r−αi gi + K
P

Coverage probability:

Pcov(T ) = P (γ ≥ T )

Average throughput per UT:

C =
W

L
× E [log(1 + γ)] =

W

L
×
∫ ∞

0

Pcov (ez − 1) dz

Remarks:

I expectation with respect to fading and BSs locations

I S =
∣∣hH

0 w0,1

∣∣2 ∼ Γ(N − K + 1, 1), gi =
∑K

k=1

∣∣hH
i wi,k

∣∣2 ∼ Γ(K , 1)

I K impacts the interference distribution, N impacts the desired signal

I for P →∞, the SINR becomes independent of λBS
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A closed-form result

Theorem (Combination of Baccelli’09, Andrews’10)

Pcov(T ) =

∫
r0>0

∫ ∞
−∞
LIr0

(i2πrα0 Ts) exp

(
−

i2πrα0 TK

P
s

)
LS (−i2πs)− 1

i2πs
fr0 (r0)dsdr0

where

LIr0
(s) = exp

(
−2πλBS

∫ ∞
r0

(
1−

1

(1 + sv−α)K

)
vdv

)

LS (s) =

(
1

1 + s

)N−K+1

fr0 (r0) = 2πλBSr0e−λBSπr2
0

The computation of Pcov(T ) requires in general three numerical integrals.

J. G. Andrews, F. Baccelli, R. K. Ganti, “A Tractable Approach to Coverage and Rate in Cellular Networks” IEEE

Trans. Wireless Commun., submitted 2010.

F. Baccelli, B. B laszczyszyn, P. Mühlethaler, “Stochastic Analysis of Spatial and Opportunistic Aloha” Journal on

Selected Areas in Communications, 2009
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Example

I Density of UTs: λUT = 16

I Constant transmit power density: P × λBS = 10

I Number of BS-antennas: N = λUT/λBS

I Path loss exponent: α = 4

I UT simultaneously served on each band: K = λUT/(λBS × L)

⇒ Only two parameters: λBS and L

Table: Average spectral efficiency C/W in (bits/s/Hz)

sub-bands L λBS = 1 λBS = 2 λBS = 4 λBS = 8 λBS = 16

1 0.6209 0.8188 1.1964 1.5215 2.1456

2 1.1723 1.2414 1.3404 1.5068 x

4 0.8882 0.8973 1.1964 x x

8 0.5689 0.5952 x x

16 0.3532 x x x x

Fully distributing the antennas gives highest throughput gains!
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First conclusions

I Distributed network densification is preferable over massive MIMO if the
average throughput per UT should be increased.

I More antennas increase the coverage probability, but more BSs lead to a
linear increase in area spectral efficiency (with constant total transmit
power).

I If we use other metrics such as coverage probability or goodput, the
picture might change.

What happens if massively many antennas are used?
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Infinitely Many Antennas: Forward-Link Capacity For 20 
MHz Bandwidth, 42 Terminals per Cell, 500 sec Slot

Frequency Reuse .95-Likely SIR 
(dB)

.95-Likely 
Capacity per 

Terminal 
(Mbits/s)

Mean Capacity 
per Terminal 

(Mbits/s)

Mean Capacity 
per Cell (Mbits/s)

1 -29 .016 44 1800

3 -5.8 .89 28 1200

7 8.9 3.6 17 730

Interference-limited: energy-per-bit can be made arbitrarily small!

Mean Capacity 
per Cell (Mbits/s)

LTE Advanced
(>= Release 10)

74



Motivation of massive MIMO

Consider a N × K MIMO MAC:

y =
K∑

k=1

hkxk + n

where hk , n are i.i.d. with zero mean and unit variance.

By the strong law of large numbers:

1

N
hm

Hy
a.s.−−−−−−−−−−→

N→∞, K=const.
xm

With an unlimited number of antennas,

uncorrelated interference and noise vanish,

the matched filter is optimal,

the transmit power can be made arbitrarily small.

T. Marzetta, “Noncooperative cellular wireless with unlimited numbers of base station antennas” IEEE Trans. Wireless Commun.,

vol. 9, no. 11, pp. 35903600, Nov. 2010.

Jakob Hoydis (Supélec) Massive MIMO: How many antennas do we need? 4 / 30
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About some fundamental assumptions

The receiver has perfect channel state information (CSI).
What happens if the channel must be estimated?

The number of interferers K is small compared to N.
What does small mean?

The channel provides infinite diversity, i.e., each antenna gives an independent look
on the transmitted signal.

What if the degrees of freedom are limited?

The received energy grows without bounds as N →∞.
Clearly wrong, but might hold up to very large antenna arrays if the
aperture scales with N.

Jakob Hoydis (Supélec) Massive MIMO: How many antennas do we need? 5 / 30
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On channel estimation and pilot contamination

1 The receiver estimates the channels based on pilot sequences.

2 The number of orthogonal sequences is limited by the coherence time.

3 Thus, the pilot sequences must be reused.

Assume that transmitter m and j use the same pilot sequence:

ĥm = hm + hj︸︷︷︸
pilot contamination

+ nm︸︷︷︸
estimation noise

Thus,
1

N
ĥm

Hy
a.s−−−−−−−−−→

N→∞,K=const.
xm + xj

With an unlimited number of antennas,

uncorrelated interference, noise and estimation errors vanish,

the matched filter is optimal,

the transmit power can be made arbitrarily small (∼ 1/
√
N [Ngo’11]),

but the performance is limited by pilot contamination.

T. Marzetta, “Noncooperative cellular wireless with unlimited numbers of base station antennas” IEEE Trans. Wireless Commun.,

vol. 9, no. 11, pp. 35903600, Nov. 2010.
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Uplink
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System model and channel estimation

Uplink: L BSs with N antennas, K UTs per cell. Received signal at BS j :

yj =
√
ρ

L∑
l=1

Hjlxl + nj

The columns of Hjl (N × K) are modeled as

hjlk = R
1
2
jlkwjlk , wjlk ∼ CN (0, IN)

Channel estimation:

yτjk = hjjk +
∑
l 6=j

hjlk +
1
√
ρτ

njk

MMSE estimate: hjjk = ĥjjk + h̃jjk

ĥjjk ∼ CN (0,Φjjk) , h̃jjk ∼ CN (0,Rjjk −Φjjk)

Φjlk = RjjkQjkRjlk , Qjk =

(
1

ρτ
IN +

∑
l

Rjlk

)−1
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Achievable rates with linear detectors
Ergodic achievable rate of UT m in cell j :

Rjm = EĤjj
[log2 (1 + γjm)]

γjm =

∣∣∣rH
jmĥjjm

∣∣∣2
E
[
rH
jm

(
1
ρ

IN + h̃jjmh̃H
jjm − hjjmhH

jjm +
∑

l HjlHH
jl

)
rjm
∣∣∣Ĥjj

]
with an arbitrary receive filter rjm.

Two specific linear detectors rjm:

rMF
jm = ĥjjm

rMMSE
jm =

(
ĤjjĤ

H
jj + Zj + NλIN

)−1

ĥjjm

where λ > 0 is a design parameter and

Zj = E

H̃jjH̃
H
jj +

∑
l 6=j

HjlHjl

 =
∑
k

(Rjjk −Φjjk) +
∑
l 6=j

∑
k

Rjlk .

B. Hassibi and B. M. Hochwald, “How much training is needed in multiple-antenna wireless links?” IEEE Trans. Inf. Theory., vol.

49, no. 4, pp. 951–963, Nov. 2003.
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Large system analysis based on random matrix theory

Assume N,K →∞ at the same speed. Then,

γjm − γ̄jm
a.s.−−→ 0

Rjm − log2 (1 + γ̄jm)
a.s.−−→ 0

where

γ̄MF
jm =

(
1
N

tr Φjjm

)2

1
ρN2 tr Φjjm + 1

N

∑
l,k

1
N

tr RjlkΦjjm +
∑

l 6=j

∣∣ 1
N

tr Φjlm

∣∣2

γ̄MMSE
jm =

δ2
jm

1
ρN2 tr ΦjjmT̄′j + 1

N

∑
l,k µjlkm +

∑
l 6=j |ϑjlm|2

and δjm, µjlkm, θjlm, T̄′j can be calculated numerically.
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A simple multi-cell scenario

intercell interference factor α ∈ [0, 1]
transmit power per UT: ρ
Hjl = [hjl1 · · · hjlK ] =

√
N/PAWjl

A ∈ CN×P
composed of P ≤ N columns of a unitary matrix

Wij ∈ CP×K
have i.i.d. elements with zero mean and unit variance

Assumptions:

P channel degrees of freedom, i.e., rank (Hjl) = min(P,K) [Ngo’11]
energy scales linearly with N, i.e., E

[
tr HjlH

H
jl

]
= KN

only pilot contamination, i.e., no estimation noise:

ĥjjk = hjjk +
√
α
∑
l 6=j

hjlk
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Asymptotic performance of the matched filter

Assume that N, K and P grow infinitely large at the same speed:

SINRMF ≈ 1

L̄

ρN︸︷︷︸
noise

+
K

P
L̄2︸ ︷︷ ︸

multi-user interference

+ α(L̄− 1)︸ ︷︷ ︸
pilot contamination

where L̄ = 1 + α(L− 1).

Observations:

The effective SNR ρN increases linearly with N.

The multiuser interference depends on P/K and not on N.

Ultimate performance limit:

SINRMF a.s−−−−−−−−−−−→
N,P→∞, K=const.

SINR∞ =
1

α(L̄− 1)

J. Hoydis, S. ten Brink, and M. Debbah, “Massive MIMO: How many antennas do we need”, Allerton Conference,

Urbana-Champaing, Illinois, US, Sep. 2011. [Online] http://arxiv.org/abs/1107.1709
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Asymptotic performance of the MMSE detector

Assume that N, K and P grow infinitely large at the same speed:

SINRMMSE ≈ 1

L̄

ρN
X︸ ︷︷ ︸

noise

+
K

P
L̄2Y︸ ︷︷ ︸

multi-user interference

+ α(L̄− 1)︸ ︷︷ ︸
pilot contamination

where L̄ = 1 + α(L− 1) and X ,Y are given in closed-form.

Observations:

As for the MF, the performance depends only on ρN and P/K .

The ultimate performance of MMSE and MF coincide:

SINRMMSE a.s−−−−−−−−−−−→
N,P→∞, K=const.

SINR∞ =
1

α(L̄− 1)

J. Hoydis, S. ten Brink, and M. Debbah, “Massive MIMO: How many antennas do we need”, Allerton Conference,

Urbana-Champaing, Illinois, US, Sep. 2011. [Online] http://arxiv.org/abs/1107.1709
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Numerical results
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Conclusions (I) - Uplink

Massive MIMO can be seen as a particular operating condition where

noise + interference� pilot contamination.

If this condition is satisfied depends on:

P/K : degrees of freedom per UT

ρN : effective SNR (transmit power × number of antennas)

α : path loss (or intercell interference)

Connection between N and P is crucial, but unclear for real channels.

As N →∞, MF and MMSE detector achieve identical performance. For finite N,
the MMSE detector largely outperforms the MF.

The number of antennas needed for massive MIMO depends on all these parameters!
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Jakob Hoydis (Supélec) Massive MIMO: How many antennas do we need? 18 / 30



Downlink
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System model: Downlink

L BSs with N antennas, K UTs per cell. Received signal at mth UT in cell j :

yjm =
√
ρ

L∑
l=1

hH
ljmsl + qjm

where

sl =
√
λl

K∑
m=1

wlmxlm =
√
λlWlxl

λl =
1

tr WlWH
l

=⇒ E
[
ρsH

l sl
]

= ρ

Channel estimation through uplink pilots (as before):

hjjk = ĥjjk + h̃jjk

ĥjjk ∼ CN (0,Φjjk) , h̃jjk ∼ CN (0,Rjjk −Φjjk)

Φjlk = RjjkQjkRjlk , Qjk =

(
1

ρτ
IN +

∑
l

Rjlk

)−1
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Achievable rates with linear precoders

Ergodic achievable rate of UT m in cell j :

Rjm = log2 (1 + γjm)

γjm =

∣∣E [√λjh
H
jjmwjm

]∣∣2
1
ρ

+ var
[√

λjhH
jjmwjm

]
+
∑

(l,k)6=(j,m) E
[∣∣∣√λlhH

ljmwlk

∣∣∣2] .

Two specific precoders Wj :

WBF
j

4
= Ĥjj

WRZF
j

4
=
(

ĤjjĤ
H
jj + Fj + NαIN

)−1

Ĥjj

where α > 0 and Fj are design parameters.

J. Jose, A. Ashikhmin, T. Marzetta, and S. Vishwanath, “Pilot contamination and precoding in multi-cell TDD systems,” IEEE

Trans. Wireless Commun., no. 99, pp. 1–12, 2011.
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Large system analysis based on random matrix theory

Assume N,K →∞ at the same speed. Then,

γjm − γ̄jm
a.s.−−→ 0

Rjm − log2 (1 + γ̄jm)
a.s.−−→ 0

where

γ̄BF
jm =

λ̄j

(
1
N

tr Φjjm

)2

K
Nρ

+ 1
N

∑
l,k λ̄l

1
N

tr RljmΦllk +
∑

l 6=j λ̄j

∣∣ 1
N

tr Φljm

∣∣2
γ̄RZF
jm =

λ̄jδ
2
jm

K
Nρ

(1 + δjm)2 + 1
N

∑
l,k λ̄l

(
1+δjm
1+δlk

)2

µljmk +
∑

l 6=j λ̄l

(
1+δjm
1+δlm

)2

|ϑljm|2

and λ̄j , δjm, µjlkm and ϑjlm can be calculated numerically.

J. Hoydis, S. ten Brink, M. Debbah, “Comparison of linear precoding schemes for downlink Massive MIMO”, ICC’12, 2011.
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Jakob Hoydis (Supélec) Massive MIMO: How many antennas do we need? 22 / 30



Downlink: Numerical results
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Base stations
User terminals

cell l

UT k
djlk2

cell j

3
4

7 cells, K = 10 UTs distributed on a circle of radius 3/4

path loss exponent β = 3.7, ρτ = 6 dB, ρ = 10 dB

Two channel models:

I No correlation

I R̃jlk = d
−β/2
jlk [A 0N×N−P ], where A = [a(φ1) · · · a(φP)] ∈CN×P

with

a(φp) =
1
√
P

[
1, e−i2πc sin(φ), . . . , e−i2πc(N−1) sin(φ)

]T
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Downlink: Numerical results
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Conclusions (II) - Downlink

For finite N, RZF is largely superior to BF:
A matrix inversion can reduce the number of antennas by one order of magnitude!

Whether or not massive MIMO will show its theoretical gains in practice depends on
the validity of our channel models.

Reducing signal processing complexity by adding more antennas seems a bad idea.

Many antennas at the BS require TDD (FDD: overhead scales linearly with N)

Related work:

Overview paper: Rusek, et al., “Scaling up MIMO: Opportunities and Challenges
with Very Large Arrays”, IEEE Signal Processing Magazine, to appear.
http://liu.diva-portal.org/smash/record.jsf?pid=diva2:450781

Constant-envelope precoding: S. Mohammed, E. Larsson, “Single-User Beamforming
in Large-Scale MISO Systems with Per-Antenna Constant-Envelope Constraints:
The Doughnut Channel”, http://arxiv.org/abs/1111.3752v1

Network MIMO TDD systems: Huh, Caire, et al., “Achieving “Massive MIMO”
Spectral Efficiency with a Not-so-Large Number of Antennas”,
http://arxiv.org/abs/1107.3862
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Jakob Hoydis (Supélec) Massive MIMO: How many antennas do we need? 25 / 30



Conclusions (II) - Downlink

For finite N, RZF is largely superior to BF:
A matrix inversion can reduce the number of antennas by one order of magnitude!

Whether or not massive MIMO will show its theoretical gains in practice depends on
the validity of our channel models.

Reducing signal processing complexity by adding more antennas seems a bad idea.

Many antennas at the BS require TDD (FDD: overhead scales linearly with N)

Related work:

Overview paper: Rusek, et al., “Scaling up MIMO: Opportunities and Challenges
with Very Large Arrays”, IEEE Signal Processing Magazine, to appear.
http://liu.diva-portal.org/smash/record.jsf?pid=diva2:450781

Constant-envelope precoding: S. Mohammed, E. Larsson, “Single-User Beamforming
in Large-Scale MISO Systems with Per-Antenna Constant-Envelope Constraints:
The Doughnut Channel”, http://arxiv.org/abs/1111.3752v1

Network MIMO TDD systems: Huh, Caire, et al., “Achieving “Massive MIMO”
Spectral Efficiency with a Not-so-Large Number of Antennas”,
http://arxiv.org/abs/1107.3862
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Conclusions (II) - Downlink

For finite N, RZF is largely superior to BF:
A matrix inversion can reduce the number of antennas by one order of magnitude!

Whether or not massive MIMO will show its theoretical gains in practice depends on
the validity of our channel models.

Reducing signal processing complexity by adding more antennas seems a bad idea.

Many antennas at the BS require TDD (FDD: overhead scales linearly with N)

Related work:

Overview paper: Rusek, et al., “Scaling up MIMO: Opportunities and Challenges
with Very Large Arrays”, IEEE Signal Processing Magazine, to appear.
http://liu.diva-portal.org/smash/record.jsf?pid=diva2:450781
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Conclusions (III) - Interesting topics for future work

Is large-scale MIMO the smartest option?
How else could additional antennas at the BSs be used?
(Example: Interference reduction in heterogeneous networks)

If we could double the number of antennas in a network, what should we do?
More BSs or more antennas per BS?

How much can be gained through cooperation?
Can we compensate for densification by cooperation?

Optimal placement of N antennas to cover a given area

3D-beamforming in dense networks

Massive MIMO becomes a necessity for communications at millimeter waves...

Full-duplex radios for cellular communications?
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Thank you!
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