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“The total worldwide mobile traffic is expected to increase 33x from
2010-2020.""

“The average 3G smart phone user consumed 375 MB/month. The average 3G
broadband (HSPA/+) user consumed 5 GB/month. The average LTE
consumer used 14-15 GB/month of data.?”

!Source: IDATE for UMTS Forum
%Press release of a Scandinavian operator (Nov. 2010)
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Network densification
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The exploding demand for wireless data traffic requires a massive network

densification:

Densification: “Increasing the number of antennas per unit area”




“David vs Goliath* or "Small Cells vs Massive MIMO *

How to densify: “More antennas or more BSs?” ‘

Questions:
» Should we install more base stations or simply more antennas per base?
» How can massively many antennas be efficiently used?

» Can massive MIMO simplify the signal processing?



Bell Labs lightradio antenna module - the
next generation small cell
(picture from www.washingtonpost.com)
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A thought experiment

Consider an infinite large network of randomly uniformly distributed base
stations and user terminals.

What would be better?

2 X more base stations

B 2 X more antennas per base station



A thought experiment

Consider an infinite large network of randomly uniformly distributed base
stations and user terminals.

What would be better?

2 X more base stations

B 2 X more antennas per base station

Stochastic geometry can provide an answer.




System model: Downlink

Received signal at a tagged UT at the origin:

1 ZOO 1
y = Tphgxo—F T/2h5‘—|xl' +n
"o i=1 Fi
——

desired signal interference

» h; ~ CN(0,ly): fast fading channel vectors
» r;: distance to ith closest BS

» P =E [x{'x;]: average transmit power constraint per BS



System model: Downlink

Received signal at a tagged UT at the origin:
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1 ZOO 1
y = Tphgxo—F T/2h5‘—|xl' +n
"o i=1 Fi
——

desired signal interference

hij ~ CN(0, ly): fast fading channel vectors
ri: distance to ith closest BS

P =E [x{'x;]: average transmit power constraint per BS

Assumptions:

>

infinitely large network of uniformly randomly distributed BSs and UTs
with densities A\gs and Ay, respectively

single-antenna UTs, N antennas per BS
each UT is served by its closest BS
distance-based path loss model with path loss exponent @ > 2

total bandwidth W, re-used in each cell



Transmission strategy: Zero-forcing

Assumptions:
» K= % UTs need to be served by each BS on average
» total bandwidth W divided into L > 1 sub-bands

» K=K/L< N UTs are simultaneously served on each sub-band



Transmission strategy: Zero-forcing

Assumptions:
> K= % UTs need to be served by each BS on average
» total bandwidth W divided into L > 1 sub-bands

» K=K/L< N UTs are simultaneously served on each sub-band

Transmit vector of BS i:

K
)
Xj = RE Wi kSi k
k=1

> sk ~CN(0,1): message determined for UT k from BS i

> Wik € cV ZF-beamforming vectors



Performance metric: Average throughput
Received SINR at tagged UT:

re @ ‘hg'wo,1|2 ()

v = = -
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Coverage probability:
Peos(T) =P (y > T)

Average throughput per UT:

c = %xE[Iog(lJr'y)]:%x/ Peoy (€% — 1) dz
0




Performance metric: Average throughput
Received SINR at tagged UT:

y = r " “‘(F)|W0,1|2 _ ()
it Eszl |h:HW"»k|2 +5 DY %

Coverage probability:
Peos(T) =P (y > T)

Average throughput per UT:

c = ﬂx]E[Iog(lJr'y)]:ﬂx/ Peoy (€% — 1) dz
0

L L
Remarks:
> expectation with respect to fading and BSs locations
> S=|hwo i ~T(N-K+1,1), g =K |hwi| ~T(K,1)
» K impacts the interference distribution, N impacts the desired signal
» for P — oo, the SINR becomes independent of Ags



A closed-form result

Theorem (Combination of Baccelli’09, Andrews'10)
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The computation of Pco,(T) requires in general three numerical integrals.

J. G. Andrews, F. Baccelli, R. K. Ganti, “A Tractable Approach to Coverage and Rate in Cellular Networks” |IEEE

Trans. Wireless Commun., submitted 2010.
F. Baccelli, B. Btaszczyszyn, P. Miihlethaler, “Stochastic Analysis of Spatial and Opportunistic Aloha” Journal on

Selected Areas in Communications, 2009



Example

v

Density of UTs: Ayt = 16

» Constant transmit power density: P X Ags = 10
> Number of BS-antennas: N = Ayt/Ass
>

Path loss exponent: o = 4

v

UT simultaneously served on each band: K = A\y7r/(Ags x L)

= Only two parameters: Ags and L
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Density of UTs: Ayt = 16
» Constant transmit power density: P X Ags = 10
Number of BS-antennas: N = Ayt /Ass

Path loss exponent: o = 4

= Only two parameters: Ags and L

Table: Average spectral efficiency C/W in (bits/s/Hz)

UT simultaneously served on each band: K = A\y7r/(Ags x L)

sub-bands L | Ags =1 | dgs =2 | Ags =4 | Ags =8 | Ags =16
1 0.6209 0.8188 1.1964 1.5215
2 1.1723 1.2414 1.3404 1.5068 X
4 0.8882 0.8973 1.1964 X X
8 0.5689 0.5952 X X
16 0.3532 X X X X

Fully distributing the antennas gives highest throughput gains!




First conclusions

» Distributed network densification is preferable over massive MIMO if the
average throughput per UT should be increased.

» More antennas increase the coverage probability, but more BSs lead to a
linear increase in area spectral efficiency (with constant total transmit
power).

> If we use other metrics such as coverage probability or goodput, the
picture might change.



Cellular Dreams and
Cordless Nightmares

Life at Bell Laboratories
in Interesting Times

Richard H. Frenkiel



Trials and Tribulations

By 1976, the time had come to prove that our many claims could be turned mnto a
practical system. Small cell coverage over a large service area would require hundreds of
cells and cost hundreds of mullions of dollars, so we applied for permission to conduct
two separate trials. A large-cell Market Trial in Chicago would provide realistic service
to more than 2000 customers, while a small-cell “Test Bed” in Newark, New Jersey.
would demonstrate that the smallest cells could provide good service in the presence of
nearby mterterence. In combination, these trials would provide a complete
demonstration of our system.

Motorola objected to our proposal as inadequate, since neither the trial in Chicago nor the
Test Bed in Newark demonstrated a fully developed small-cell system. Chicago, they
argued. used very large cells, while Newark was only a partial grid of small cells. Since a
demonstration of small cells over a large area was clearly impractical, we were confident
that the FCC would see Motorola’s objections for what they were—another smoke screen

intended to delay progress. As it turned out, our faith was misplaced. The FCC ruled
that our proposed trials were inadequate, using virtually the same arguments that
Motorola had presented, and summarily denied our application.
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The partial small-cell grid in Newark and the Test Van



Infinitely Many Antennas: Forward-Link Capacity For 20
MHz Bandwidth, 42 Terminals per Cell, 500 usec Slot

Frequency Reuse .95-Likely SIR .95-Likely Mean Capacity Mean Capacity
(dB) Capacity per per Terminal per Cell (Mbits/s)
Terminal (Mbits/s)
(Mbits/s)
1 -29 .016 44 1800
3 -5.8 .89 28 1200
7 8.9 3.6 17 730
Mean Capacity
per Cell (Mbits/s)
LTE Advanced 74

(>= Release 10)




Motivation of massive MIMO

Consider a N x K MIMO MAC:

K
y = thxk +n
k=1

where hy,n are i.i.d. with zero mean and unit variance.
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Consider a N x K MIMO MAC:

K
y = thxk +n
k=1

where hy,n are i.i.d. with zero mean and unit variance.

By the strong law of large numbers:

1 H a.s.
—h — s X
N my N— o0, K=const.
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Motivation of massive MIMO

Consider a N x K MIMO MAC:

K
y = thxk +n
k=1

where hy,n are i.i.d. with zero mean and unit variance.

By the strong law of large numbers:

1 h Hy a.s. x
- -
N m N— o0, K=const. m

With an unlimited number of antennas,

@ uncorrelated interference and noise vanish,
@ the matched filter is optimal,

@ the transmit power can be made arbitrarily small.

T. Marzetta, “Noncooperative cellular wireless with unlimited numbers of base station antennas” |IEEE Trans. Wireless Commun.,

vol. 9, no. 11, pp. 35903600, Nov. 2010.
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About some fundamental assumptions

@ The receiver has perfect channel state information (CSI).
What happens if the channel must be estimated?
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@ The receiver has perfect channel state information (CSI).

What happens if the channel must be estimated?

@ The number of interferers K is small compared to N.
What does small mean?
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About some fundamental assumptions

@ The receiver has perfect channel state information (CSI).
What happens if the channel must be estimated?

@ The number of interferers K is small compared to N.
What does small mean?

@ The channel provides infinite diversity, i.e., each antenna gives an independent look
on the transmitted signal.
What if the degrees of freedom are limited?
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About some fundamental assumptions

The receiver has perfect channel state information (CSI).
What happens if the channel must be estimated?

@ The number of interferers K is small compared to N.
What does small mean?

The channel provides infinite diversity, i.e., each antenna gives an independent look
on the transmitted signal.
What if the degrees of freedom are limited?

The received energy grows without bounds as N — cc.
Clearly wrong, but might hold up to very large antenna arrays if the
aperture scales with .

Jakob Hoydis (Supélec) Massive MIMO: How many antennas do we need? 5 /30



On channel estimation and pilot contamination

@ The receiver estimates the channels based on pilot sequences.
@ The number of orthogonal sequences is limited by the coherence time.
© Thus, the pilot sequences must be reused.
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On channel estimation and pilot contamination

@ The receiver estimates the channels based on pilot sequences.
@ The number of orthogonal sequences is limited by the coherence time.
© Thus, the pilot sequences must be reused.

Assume that transmitter m and j use the same pilot sequence:

I/:lm = hm + hj + N,
~ ~

pilot contamination estimation noise
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Assume that transmitter m and j use the same pilot sequence:
I/:lm = hm + hj + N,
~—~ ~—~

pilot contamination estimation noise

Thus,
1. H as
—h ——— Xm + X
N my N—o00,K=const. m J
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On channel estimation and pilot contamination

@ The receiver estimates the channels based on pilot sequences.
@ The number of orthogonal sequences is limited by the coherence time.
© Thus, the pilot sequences must be reused.

Assume that transmitter m and j use the same pilot sequence:
I:\lm = hm + hj + nm
~—~ ~~~

pilot contamination estimation noise

Thus,
1. H as
—h ——— Xm + X
N my N—o00,K=const. m J

With an unlimited number of antennas,
@ uncorrelated interference, noise and estimation errors vanish,
@ the matched filter is optimal,
o the transmit power can be made arbitrarily small (~ 1/v/N [Ngo'11]),
@ but the performance is limited by pilot contamination.
T. Marzetta, “Noncooperative cellular wireless with unlimited numbers of base station antennas” |IEEE Trans. Wireless Commun.,

vol. 9, no. 11, pp. 35903600, Nov. 2010.
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Uplink

(Supéle Massive MIMO: How antennas do we need?



System model and channel estimation

Uplink: L BSs with N antennas, K UTs per cell. Received signal at BS j:

L
Yi=vpY Hpxi+n;

I=1
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System model and channel estimation
Uplink: L BSs with N antennas, K UTs per cell. Received signal at BS j:
L
¥i =Py _Hixi+n;
I=1

The columns of Hj; (N x K) are modeled as

hj/k = R%ij/k, Wj/k ~ CN(O, IN)

J!
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System model and channel estimation

Uplink: L BSs with N antennas, K UTs per cell. Received signal at BS j:

L
¥i =Py _Hixi+n;

=1
The columns of Hj; (N x K) are modeled as

hjw = R2wjn,  wj ~ CN(0, ly)

J!

Channel estimation:

B 1
Vi = hjc + Zhjlk +—
7 VP

Nk
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System model and channel estimation

Uplink: L BSs with N antennas, K UTs per cell. Received signal at BS j:

L
¥i =Py _Hixi+n;

I=1

The columns of Hj; (N x K) are modeled as

hjw = R2wjn,  wj ~ CN(0, ly)

J!

Channel estimation: 1
Vi = hj + Z hj + ——nj
7 VP

MMSE estimate: hji = hji + hj
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System model and channel estimation
Uplink: L BSs with N antennas, K UTs per cell. Received signal at BS j:
L
Yi=vpY_ Hixi+n;
I=1

The columns of Hj; (N x K) are modeled as

hjx = R wik,  wjk ~ CN(0,1n)

J!

Channel estimation: 1
Vi = hj + Z hj + ——nj
7 VP
MMSE estimate: hji = hji + hj
ﬁjjk ~ CN (0, ¢j/k), Fljjk ~CN (0, Rjix — ¢j,‘k)

1
1

i = R QikRj, Qjx = <p|N + Z lek)
T /
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Achievable rates with linear detectors
Ergodic achievable rate of UT m in cell j:

Rim = E,qﬂ. [log, (1 + ~jm)]

2
Ho
rj hjjm

Yim = Jo— ~
E [r;'m (%IN + gl — hynht 4+, H,-,Hp) tim ‘H,-j]

with an arbitrary receive filter rj,.

B. Hassibi and B. M. Hochwald, “How much training is needed in multiple-antenna wireless links?” |EEE Trans. Inf. Theory., vol.

49, no. 4, pp. 951-963, Nov. 2003.
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Achievable rates with linear detectors
Ergodic achievable rate of UT m in cell j:
Rim = Egﬂ [log, (1 + ~jm)]

2

~

I‘}-‘mhﬂm
E e, (2w + Rymhth, — Ryl + 50, HiHY ) b [F ]

with an arbitrary receive filter rj,.

im =

Two specific linear detectors rjm:

MF i

rim = hjf’"
A A _1 i
rj[\rllnMSE _ (HinE! +Zi+ N)\llv) hjjm

where A > 0 is a design parameter and

Z;=E |A;A} + > HH; Z(Rﬂk_ i) + DD R

1] I#j  k

B. Hassibi and B. M. Hochwald, “How much training is needed in multiple-antenna wireless links?” |EEE Trans. Inf. Theory., vol.
49, no. 4, pp. 951-963, Nov. 2003.
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Large system analysis based on random matrix theory

Assume N, K — oo at the same speed. Then,
Yjim — Yjm 250

Rjm — log (1 + %jm) — 0
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Large system analysis based on random matrix theory

Assume N, K — oo at the same speed. Then,
Yim = i > 0

Rjm — log (1 + %jm) — 0

where

_MF (ﬁtrd)ﬁm)z

Yjm 2
ﬁtr ¢ij + % Z/,k %tr Rj/kd)_,jm + Z/#j |%tl’ ‘Dj/m‘

2

~MMSE __ Oim

Tm T T e T4 L 2
@i o4 5 30 ik + 221 |0t

-, .
and &jm, fjkm, Ojim, T; can be calculated numerically.

Jakob Hoydis (Supélec) Massive MIMO: How many antennas do we need? 10 / 30



A simple multi-cell scenario

L cells

N antennas

H. oH;,
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A simple multi-cell scenario

L cells

N antennas

H,; aHj;

intercell interference factor a € [0, 1]

transmit power per UT: p

Hj = [hjn---hjx] = /N/PAW;

AcC'*” composed of P < N columns of a unitary matrix

W; € C"*" have i.i.d. elements with zero mean and unit variance
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A simple multi-cell scenario

L cells

N antennas

o intercell interference factor « € [0, 1]
@ transmit power per UT: p

o Hjy=Tlhjn---hjx] = /N/PAWj

o AcCV” composed of P < N columns of a unitary matrix

o W; e C"*" have i.i.d. elements with zero mean and unit variance

Assumptions:
@ P channel degrees of freedom, i.e., rank (H;) = min(P, K) [Ngo'11]
o energy scales linearly with N, i.e., E [trH;H}/] = KN
@ only pilot contamination, i.e., no estimation noise:
hje = hjic +va ) hi
14
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Asymptotic performance of the matched filter

Assume that N, K and P grow infinitely large at the same speed:

MF 1
SINR™ ~ I P
-5 -
— + =L + aol-1)
pN P N—_——
v . N pilot contamination
noise multi-user interference
where L =1+ oL — 1).
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Asymptotic performance of the matched filter

Assume that N, K and P grow infinitely large at the same speed:

1
SINRYF ~ i -
Nt Pl o+ el
< ilot contamination
noise multi-user interference "

where L =14 oL —1).

Observations:
o The effective SNR pN increases linearly with N.
@ The multiuser interference depends on P/K and not on N.

o Ultimate performance limit:

1

SINRMF —2° L, GINR® = —_
N,P—o0, K=const. a(L — 1)

J. Hoydis, S. ten Brink, and M. Debbah, “Massive MIMO: How many antennas do we need”, Allerton Conference,
Urbana-Champaing, lllinois, US, Sep. 2011. [Online] http://arxiv.org/abs/1107.1709
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Asymptotic performance of the MMSE detector

Assume that N, K and P grow infinitely large at the same speed:

SINRMMSE ~ 1
L K- -
X T pLY 4 ey
. pilot contamination
noise multi-user interference

where [ =14 oL — 1) and X, Y are given in closed-form.
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Asymptotic performance of the MMSE detector

Assume that N, K and P grow infinitely large at the same speed:

SINRMMSE ~ !
L K <2 -
X plY 4 ey
i multi-user interference pilot contamination

where L =1+ a(L — 1) and X, Y are given in closed-form.

Observations:
@ As for the MF, the performance depends only on pN and P/K.
@ The ultimate performance of MMSE and MF coincide:

SINRMMSE 2% L, GINR® = —_

N,P— 00, K=const. a([_ — ]_)

J. Hoydis, S. ten Brink, and M. Debbah, “Massive MIMO: How many antennas do we need”, Allerton Conference,
Urbana-Champaing, lllinois, US, Sep. 2011. [Online] http://arxiv.org/abs/1107.1709
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Numerical results

Ergodic achievable rate (b/s/Hz)

5:"""""""""""""""':

p:l,K:lO,a:O.l,L:4|

P =N/3

——— MF approx.
- - —- MMSE approx.
e Simulations

0 100 200

300

Number of antennas N

Jakob Hoydis (Supélec)

Massive MIMO: How many antennas do we need?

400
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Conclusions (I) - Uplink

@ Massive MIMO can be seen as a particular operating condition where

noise + interference < pilot contamination.
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Conclusions (I) - Uplink

@ Massive MIMO can be seen as a particular operating condition where

noise + interference < pilot contamination.

o If this condition is satisfied depends on:

P/K : degrees of freedom per UT
pN : effective SNR (transmit power X number of antennas)

o : path loss (or intercell interference)
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noise + interference < pilot contamination.

o If this condition is satisfied depends on:

P/K : degrees of freedom per UT
pN : effective SNR (transmit power X number of antennas)

o : path loss (or intercell interference)

@ Connection between N and P is crucial, but unclear for real channels.

@ As N — oo, MF and MMSE detector achieve identical performance. For finite N,
the MMSE detector largely outperforms the MF.
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Conclusions (1) - Uplink

@ Massive MIMO can be seen as a particular operating condition where

noise + interference < pilot contamination.

o If this condition is satisfied depends on:

P/K : degrees of freedom per UT
pN : effective SNR (transmit power X number of antennas)
a : path loss (or intercell interference)

@ Connection between N and P is crucial, but unclear for real channels.

@ As N — oo, MF and MMSE detector achieve identical performance. For finite N,
the MMSE detector largely outperforms the MF.

@ The number of antennas needed for massive MIMO depends on all these parameters!
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Downlink

(Supéle

Massive MIMO: How many antennas do we need?



System model: Downlink

L BSs with N antennas, K UTs per cell. Received signal at mth UT in cell j:

L

Yjm = \/Z)Z hZ!msl + qjm

I=1
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System model: Downlink

L BSs with N antennas, K UTs per cell. Received signal at mth UT in cell j:

L
Yim = /P Y w1 + Gjm
=1
where
K
si =\ ZWImXIm = vV AMWx;
m=1

1

tr W, WH peisijp=»
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System model: Downlink

L BSs with N antennas, K UTs per cell. Received signal at mth UT in cell j:

L
Yim = \/ﬁz hz!ms/ + qjm
1=1

where B
s = \mzwlmxlm =V AWix
m=1

1

A=
T arwwh

= E [ps,Hs,] =p

Channel estimation through uplink pilots (as before):

hj = Ry + by
ﬁjjk ~ CN (0, ¢j/k), Fljjk ~CN (0, Rjix — ¢j/k)

1
1

i = R QikRj, Qjx = <p|N + Z lek)
T /
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Achievable rates with linear precoders

Ergodic achievable rate of UT m in cell j:
Rjm = log, (1 + vjm)
[E [VAhnwin] | .
% + var [\/)Tjh;mwjm] + 2 0,m E Uﬁh?mwlk’z}

Yjm =

J. Jose, A. Ashikhmin, T. Marzetta, and S. Vishwanath, "“Pilot contamination and precoding in multi-cell TDD systems,” |IEEE
Trans. Wireless Commun., no. 99, pp. 1-12, 2011.
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Achievable rates with linear precoders

Ergodic achievable rate of UT m in cell j:
Rjm = log, (1 + vjm)
2
[E [v/Ajhjmwimn] |

.
5 Fvar [VARGWin] + 32 i04,m B U‘mh?‘m‘”’k ’ }

Yjm =

Two specific precoders W;:

WJI‘BF =H;

1>

Wi

where o > 0 and F; are design parameters.

J. Jose, A. Ashikhmin, T. Marzetta, and S. Vishwanath, "“Pilot contamination and precoding in multi-cell TDD systems,” |IEEE
Trans. Wireless Commun., no. 99, pp. 1-12, 2011.
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Large system analysis based on random matrix theory

Assume N, K — oo at the same speed. Then,
— a.s.
Yjm = Yjm — 0

Rim — log, (1 + Ajm) — 0

J. Hoydis, S. ten Brink, M. Debbah, “Comparison of linear precoding schemes for downlink Massive MIMO”, 1CC'12, 2011.
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Large system analysis based on random matrix theory

Assume N, K — oo at the same speed. Then,
— a.s.
Yjm = Yjm — 0

Rim — log, (1 + Ajm) — 0

where

— 5
f_y-BF _ )\J' (Wtr ¢jjm)
Jm K 1 31 R 2
Mo T ok Nt Rym @i + 30 Ay | ytr @
3 .52
—RZF _ )‘6m
jm =

2 v [ 1t0jm 2 2
(1 + 5Jm) +w Z/ k i (1+5,k ) Fijmk + El;éj Al (m) |9 jm|

and Aj, &jm, tjkm and ¥jm can be calculated numerically.

J. Hoydis, S. ten Brink, M. Debbah, “Comparison of linear precoding schemes for downlink Massive MIMO", ICC'12, 2011.
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Downlink: Numerical results
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@ 7 cells, K =10 UTs distributed on a circle of radius 3/4

Jakob Hoydis (Supélec)

Massive MIMO: How many antennas do we need?

23 /30



Downlink: Numerical results

3 T T T
o
. o * User terminalg
2F 3 + 0 4
o o e o
. « ° ® . °
it e + . ¢, UTk + o
2 o o djtk
° o o celll o
o o e o
or . + . B
e o ; e o
. o ® cell j o . o
o o
-1t e + ° . + o 4
o . . .
o o 3 o o
2 +<l> 1
_3 . . . . .
-3 -2 -1 0 1 2 3

@ 7 cells, K =10 UTs distributed on a circle of radius 3/4
@ path loss exponent 5 = 3.7, p =6 dB, p =10 dB

Jakob Hoydis (Supélec) Massive MIMO: How many antennas do we need? 23 /30



Downlink: Numerical results

3

+ Base stations
® User terminals|
P
.
.
1 .
°
ol
o
-1r .
o . . .
o o 3 o o
-2 +<d> B
_3 .
-3 -2 -1 0 1 2 3

@ 7 cells, K =10 UTs distributed on a circle of radius 3/4

@ path loss exponent 5 = 3.7, p =6 dB, p =10 dB
@ Two channel models:

> No correlation

> Rj = djp”/*[A Onsen—p], where A = [a(¢1) - a(¢p)] € C7 with
1 —i2mcsin —i2wc(N—1) sin T
a(¢p):ﬁ[l,e resn(@), . emore(N=1)sin(o)]
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Downlink: Numerical results
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Conclusions (II) - Downlink

@ For finite N, RZF is largely superior to BF:
A matrix inversion can reduce the number of antennas by one order of magnitude!
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@ For finite N, RZF is largely superior to BF:
A matrix inversion can reduce the number of antennas by one order of magnitude!

@ Whether or not massive MIMO will show its theoretical gains in practice depends on
the validity of our channel models.

@ Reducing signal processing complexity by adding more antennas seems a bad idea.

@ Many antennas at the BS require TDD (FDD: overhead scales linearly with N)

Related work:

@ Overview paper: Rusek, et al., “Scaling up MIMO: Opportunities and Challenges
with Very Large Arrays”, IEEE Signal Processing Magazine, to appear.
http://liu.diva-portal.org/smash /record.jsf ?pid=diva2:450781

o Constant-envelope precoding: S. Mohammed, E. Larsson, “Single-User Beamforming
in Large-Scale MISO Systems with Per-Antenna Constant-Envelope Constraints:
The Doughnut Channel”, http://arxiv.org/abs/1111.3752v1

@ Network MIMO TDD systems: Huh, Caire, et al., “Achieving “Massive MIMQ"
Spectral Efficiency with a Not-so-Large Number of Antennas”,
http://arxiv.org/abs/1107.3862
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Conclusions (ll) - Interesting topics for future work

o Is large-scale MIMO the smartest option?
How else could additional antennas at the BSs be used?
(Example: Interference reduction in heterogeneous networks)
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How else could additional antennas at the BSs be used?
(Example: Interference reduction in heterogeneous networks)

@ If we could double the number of antennas in a network, what should we do?
More BSs or more antennas per BS?

@ How much can be gained through cooperation?
Can we compensate for densification by cooperation?

@ Optimal placement of N antennas to cover a given area
@ 3D-beamforming in dense networks
@ Massive MIMO becomes a necessity for communications at millimeter waves...

o Full-duplex radios for cellular communications?
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Thank you!

(Supéle

Massive MIMO: How many antennas do we need?





