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Motivation

Cellular networks become increasingly dense: More antennas per m2

(MIMO, small cells, femto cells, etc.)

This implies a larger and larger energy footprint

It is interesting to ask: How to densify?
More antennas per base station (BS), more BSs?

Can we compensate for densification by coordination?
(multi-cell processing, interference coordination)

These are difficult questions, since one needs to account for:

fading channels

path loss

random user and possibly BS locations

cell/cluster association

inter-/intra-cell interference

imperfect channel state information and limited backhaul capacity

different transmit/receive/cooperation strategies
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State-of-the-art
Stochastic geometry for cellular (cooperative) systems:

J. G. Andrews, F. Baccelli, and R. K. Ganti, “A Tractable Approach to Coverage and Rate in Cellular Networks”, IEEE
Trans. Comm., Nov. 2011.

K. Huang and J. G. Andrews, “A Stochastic-Geometry Approach to Coverage in Cellular Networks With Multi-Cell
Cooperation”, IEEE Globecom, December 2011.

K. Huang and J. G. Andrews, “Characterizing Multi-Cell Cooperation via the Outage-Probability Exponent:, submitted to
IEEE ICC, Jun. 2012.

→ Main Focus: downlink, outage probability of a typical UT

→ Enables the study of heterogeneous, randomly deployed networks.

→ Only interference coordination, no joint transmissions, random BS-clustering

Random matrix theory for multi-cell cooperative systems:
D. Aktas, M. Bacha, J.Evans, S. Hanly, ”Scaling Results on the Sum Capacity of Cellular Networks with MIMO Links,
IEEE Trans. Inf. Theory, Jul. 2006

H. Huh, A. Tulino, G. Caire, “Network MIMO with Linear Zero-Forcing Beamforming: Large System Analysis, Impact of
Channel Estimation and Reduced-Complexity Scheduling”, arxiv: http://arxiv.org/pdf/1012.3198

J. Hoydis, M. Kobayashi, M. Debbah, ”Optimal Channel Training in Uplink Network MIMO Systems:, IEEE. Trans. Sig.
Proc., May 2011.

→ Main focus: mutual information, achievable rates with linear receivers/decoders

→ Account for realistic impairments, e.g. imperfect CSI, limited backhaul capacity

→ Provides a “deterministic abstraction” of the physical layer.

→ Only fixed topology
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Objective

Stochastic geometry is a powerful tool to study cellular networks with random
user/access point distributions. But the application to multi-cell cooperative
systems seems difficult.

Random matrix theory is suited for the analysis of cooperative systems under very
general assumptions. But only for a fixed topology.

Can we combine both tools?

Important because we want to know, for a given probabilistic user distribution:

Which BSs should cooperate?

How much can we gain from cooperation?

Where to place the BSs?
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Deterministic equivalents: Cooperation with fixed user terminals

y =

y1

...
yB

 = Hs + n =


G1T

1
2
1

...

GBT
1
2
B


s1

...
sK

+

n1

...
nB



sk ∼ CN (0, ρ): transmit symbol of UT K

nb ∼ CN (0, INb ): noise at BS b

Gb ∈ CNb×K
, [Gb]i,j ∼ CN

(
0, 1

K

)
: fast fading

Tb = diag (fb(xk))Kk=1 where fb(x) is a path loss function, e.g.

fb(x) =
1

(1 + |Rb − x |)β
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Deterministic equivalents: Mutual information and MMSE sum-rate

Theorem (Hachem, AAP’07)

Denote c = N
K

, ci = Ni
K
∀i . For Ni ,K →∞ at the same speed,

1

N
log det

(
IN + ρHHH

)
− V̄N(ρ)

a.s.−−→ 0

where

V̄N(ρ) =
B∑
i=1

ci log

(
ρ

Ψi

)
+

1

N

K∑
k=1

log

(
1 +

B∑
i=1

ci fi (xk)Ψi

)
− 1

N

K∑
k=1

∑B
i=1 ci fi (xk)Ψi

1 +
∑B

i=1 ci fi (xk)Ψi

and Ψ1, . . . ,ΨB are given as the unique positive solution to

Ψi =

(
1

ρ
+

1

K

K∑
k=1

fi (xk)

1 +
∑B

i=1 ci fi (xk)Ψi

)−1

, i = 1, . . . ,B.

Remark

SINR with MMSE detection: γk = hH
k

(
HHH − hkh

H
k + 1

ρ
IN
)−1

hk �
∑B

i=1 ci fi (xk)Ψi .

Thus: Rsum = 1
N

∑K
k=1 log (1 + γk) � 1

N

∑K
k=1 log

(
1 +

∑B
i=1 ci fi (xk)Ψi

)
.
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Deterministic equivalents: Random user locations

Assume that the positions xk of the UTs are i.i.d. with distribution F . Then,

1

N

K∑
k=1

log

(
1 +

B∑
i=1

ci fi (xk)Ψi

)
≈ 1

c

∫
log

(
1 +

B∑
i=1

ci fi (x)Ψi

)
dF (x).

Similarly,

Ψi =

(
1

ρ
+

1

K

K∑
k=1

fi (xk)

1 +
∑B

i=1 ci fi (xk)Ψi

)−1

≈

(
1

ρ
+

∫
fi (x)

1 +
∑B

i=1 ci fi (x)Ψi

dF (x)

)−1

.
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Deterministic equivalents: Random user locations

Corollary

Let xk , k = 1, . . . ,K , be i.i.d. with distribution F . Then,

1

N
log det

(
IN + ρHHH

)
− ĪN(ρ)

a.s.−−→ 0

ĪN(ρ) =
B∑
i=1

ci log

(
ρ

ψi

)
+

1

c

∫
log

(
1 +

B∑
i=1

ci fi (x)ψi

)
dF (x)−

1

c

∫ ∑B
i=1 ci fi (x)ψi

1 +
∑B

i=1 ci fi (x)ψi

dF (x)

where ψ1, . . . , ψB are given as the unique positive solution to

ψi =

(
1

ρ
+

∫
fi (x)

1 +
∑B

i=1 ci fi (x)ψi

dF (x)

)−1

, i = 1, . . . ,B.
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Application: Optimal BS-placement

K
2

UTs uniformly distributed on the intervals [0, D
2

] and [D
2
,D], respectively.

Path loss functions: fi (x) = (1 + |Ri − x ||)−β , i = 1, 2.

Decompose the channel matrix as H =

(
H1,1 H1,2

H2,1 H2,2

)
, where Hi,j ∈ CN/2×K/2

.

Mutual information without cooperation:

I nc
N (ρ) =

1

N

2∑
i=1

log det
(
IN/2 + ρHi,iH

H
i,i + ρHi ,̄iH

H
i ,̄i

)
− log det

(
IN/2 + ρHi ,̄iH

H
i ,̄i

)
where ī = 1 + i mod 2.
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Optimal BS-placement: Numerical results (I)
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Optimal BS-placement: Numerical results (II)
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Optimal BS-placement: Numerical results (II)
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Some remarks

A combination of RMT and stochastic geometry is possible but so far on simplistic
models!

Asymptotic results are accurate for realistic (large) system dimensions.

We can optimize system parameters with respect to random channel realizations and
user distributions, without simulations.

The same results could be also applied for MMSE/MRC detectors.

We can also account for imperfect CSI, limited backhaul capacity.

Extensions to two-or three-dimensional models are possible.

Keep in mind that the BS-positions are deterministic!
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TIME: Mean Field Games
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Motivations

We have seen that space provides energy savings by appropriate data multiplexing

Assuming latency is allowed, time multiplexing can be used as well

We explore here the behaviour of a decentralized system minimizing energy over
time while ensuring data arrival at deadline
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Decentrliazed time scheduling

We wish to determine a downlink strategic distribution of consumed power over time

that minimizes the individual BS power consumption

that ensures final arrival of the expected data

under light assumptions on the knowledge about adjacent cells
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System description
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Scenario and objectives (1/2)

We consider:

A network of N BSs and N UTs

UT l receives from BS l a packet within a time window T , with initial size Ql(0)

BS l chooses its power policy {pl(t)}t∈[0,T ]

BSs interfere adjacent cell users

The channel gains hnl(t) > 0 from BS n to UT l are time-varying

The data size Ql(t) is evolves with SINR at the receiver

dQl(t) = −B log(1 + SINRl(t)), SINRl(t) =
pl(t)hll(t)

σ2
l +

∑
j 6=l hjl(t)pj(t)
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The mean field game framework (1/2)

We assume a decentralized selfish optimization based on successively sensed data
and initial prior knowledge

Hence, we consider a game theoretical approach, with N players, the BS/UT
couples.

I each player establishes a power control strategy so to minimize its cost under
termination constraint

I each player reacts to changes in other player’s actions

However, N-body differential games are difficult to solve, as soon as N > 1.
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The mean field game framework (2/2)

Mean Field Games (MFG) simplify these games by assuming N →∞ and a lot of
symmetry in the system

I players individual actions do not impact overall behavior
I overall behavior led by the mass of all players.

BS’s state variables Q1(t), . . . ,QN(t) are turned into a density m(t,Q)

m(t,Q)dQ ' 1

N

N∑
n=1

δQ≤Qn(t)≤Q+dQdQ.

BS’s power strategy p(t,Q) is a reaction to m(t,Q).
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MFG definition

In order to define an MFG, some simplifying assumptions will be used:

The interference term
I (t) =

∑
k 6=l

hkl(t)pk(t)

needs a mean-field limit. We choose an appropriate scaling by γ/N for some γ > 0
constant

I∞(t) = γ

∫
Q

∫
h

m(t,Q, h)h(t)p(t,Q, h)dQdh

For readability (although not necessary), we take h(t) = 1 constant.
(otherwise, we would consider the dual-state variable (Q, h))
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MFG equations

The optimization problem we consider is the following:

min
p(t)

∫ T

0

p(t)dt + K(Q(T ))

with K(Q) a terminal cost function, such that

dQ(t) = −B log(1 + SINR(t,mt , p(t)))

where,

SINR(t,mt , p(t)) =
p(t)

σ2 + I∞(t,mt)

for given Q(0) and m0.
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MFG equations
We consider the running cost function v(t,Q)

v(t,Q) =

∫ T

t

p(u)du + K(Q(T ))

An optimal power control p∗(t,Q) exists if there exists a function v∗(t,Q) solution to
the Hamilton-Jacobi-Bellman equation:

∂tv(t,Q) + inf
p̃(t)

[p̃(t)− B log(1 + SINR(t,m∗t , p̃(t)))∂Qv(t,Q)] = 0

where m∗t is solution to the Fokker-Planck equation

∂tmt − B∂Q log(1 + SINR(t,mt , p
(v∗)(t))mt ] = 0

with p(v∗)(t) = p(t) when v = v∗. This is precisely

∂tmt = B log

(
B∂Qv∗(t,Q)

σ2 + I∞(t,mt)

)
∂Qmt + mt

∂2
QQv∗(t,Q)

∂Qv∗(t,Q)
.

This defines a system of coupled partial differential equation.
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Discussion on the framework

The MFG assumption result has important consequences on the results:
I solution trajectory defined entirely from initial state m(0, ·)
I ⇒ BSs can run on the mean field equilibrium from t = 0

I averaged interference (not a single interference but a diffuse set) is a strong assumption
I ⇒ MFG only capture a high level vision

Extensions to more realistic scenarios are possible (e.g. annuli of interference) but
differential equations will no longer be solvable.

Romain Couillet (Supélec) Large System Analysis for Green Communications Green Workshop 24 / 29



Discussion on the framework

The MFG assumption result has important consequences on the results:
I solution trajectory defined entirely from initial state m(0, ·)
I ⇒ BSs can run on the mean field equilibrium from t = 0
I averaged interference (not a single interference but a diffuse set) is a strong assumption
I ⇒ MFG only capture a high level vision

Extensions to more realistic scenarios are possible (e.g. annuli of interference) but
differential equations will no longer be solvable.
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Simulation results (1/3)
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Figure: Optimal distribution of users m∗(t,Q)
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Simulation results (2/3)
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Figure: Remaining packet size Q(t) under optimal power p∗(t,Qt) for users with initial packet
size Q(0) ∈ {0.2, 0.4, 0.6, 0.8, 1}.
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Simulation results (3/3)
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Figure: Cumulated energy consumption
∫ t

0 p∗(u,Q(u))du under optimal power policy p∗(t,Q)
for users with initial packet sizes Q(0) ∈ {0.2, 0.4, 0.6, 0.8, 1}.
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General Conclusions

Large dimensional analysis tools allow multiple system abstractions:
I abstraction of fast fading matrices (PHY) with RMT
I abstraction of user’s locations (MAC) with MFG

⇒ These lead to model simplifications to tackle hard problems involving
I multiple cells and users
I cooperation, backhaul link limitations
I time/delay constraints,. . .

Green communications challenges and open questions can be explored within these
frameworks
Here we considered space and time diversity optimization
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Thank you!
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