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Source detection in cooperative spectrum
sensing

primary secondary

BSk

Secondary sensors try to find a bandwidth to occupy. Those K sensors

can share information, each of them receiving N samples of the signal.
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Modelisation of the statistical test

We want to test

» Hypothesis HO : No signal. Secondary sensor number k receives
a series of data yk(n) of length N of the form :

ve(n) =wi(n), n=1...N
where wy(n) ~ CN(0,02) is a white noise.
» Hypothesis H1 : Presence of a signal. The data received by
sensor number k is now of the form :
yk(n) = hies(n) + wi(n), n=1...N

where s(n) is a Gaussian primary signal and hy the fading
coefficient associated to the secondary sensor k.

As o and h are unknown, the Neyman-Pearson test cannot be
implemented.
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We gather the observation in the matrix

Y = [yk(Mliz1k n=1n

» Under HO, the entries of Y are i.i.d. CA/(0,02). The likelihood
writes :

N
po(Y;0?) = (no?) "MK exp (——2tr R) .
(o
where R = %YY* is the empirical covariance matrix.
» Under H1, the column vectors of Y are i.i.d. CA/(0, hh* + o21x)

where h = [hy,. .., hk]" is the fading vector corresponding to the
K secondary sensors. The likelihood writes :

p1(Y;h,o?) = (7" det(hh*+021k)) " exp (= Ntr (R(hh* + o?1x) ™)) .
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Generalized Likelihood Ratio Test (GLRT)

Recall that o2, h are unknown. The GLRT will reject HO for high values

of the statistics :
supy ,2p1(Y; h,0?)

sup,zpo(Y;0?)

After some standard computations, we get the following test :

Reject HO whenever the statistics :

>\max
Ty = 1
RtrR

is above the threshold ~

where Apax is the largest eigenvalue of R := £YY™.
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Performance analysis of the GLRT

For a given threshold v, we define :

> the type | Error (probability of false alarm) Py[ Ty > 4] is the
probability of deciding H1 when HO holds,

> the type Il Error P1[Tn < 7] is the probability of deciding HO
when H1 holds

(N.B. Type Il Error depends on h and )

The Receiver Operating Characterictic (ROC curve) is the set of points
(Type | Error, Type Il Error) for all possible thresholds.

ROC = {(Po[Tn > ], Pi[Tn <)) : vERL} .

= We study the ROC curve in the asymptotic regime :

K — oo, N—>oc,%—>c €(0,1)




Asymptotic behavior of Ty under HO



Asymptotic behavior of Ty under HO

Recall that R := £ YY" with Y having i.i.d. entries CA/(0, o2).



Asymptotic behavior of Ty under HO

Recall that R := £ YY" with Y having i.i.d. entries CA/(0, o2).

» By the law of large numbers,

(HO) o2

N—oo

tR
K



Asymptotic behavior of Ty under HO

Recall that R := £ YY" with Y having i.i.d. entries CA/(0, o2).
» By the law of large numbers,

(HO) o2

N—oo

tR
K

> Amax AﬁH—O)> 02(1 + \/E)2 the right edge of the Marcenko-Pastur

distribution and has Tracy-Widom fluctuations.



Asymptotic behavior of Ty under HO

Recall that R := £ YY" with Y having i.i.d. entries CA/(0, o2).

» By the law of large numbers,

(HO) o2

N—oo

tR
K

> Amax I\ﬁH—O)> 02(1 + \/E)2 the right edge of the Marcenko-Pastur

distribution and has Tracy-Widom fluctuations.

» We get that, if Ty = 1{“* and cy = ;f,

Tn — (14 Vo)
1+ ven) 1+ =)3

converges in distribution to a Tracy-Widom distribution.

Tn = N2/3




Asymptotic behavior of Ty under HO

Recall that R := £ YY" with Y having i.i.d. entries CA/(0, o2).

» By the law of large numbers,

(HO) o2

N—oo

t R——
K
> Amax AfH—O)> 02(1 + \/E)2 the right edge of the Marcenko-Pastur

distribution and has Tracy-Widom fluctuations.

» We get that, if Ty = lt"“* and cy =

K
N

Ty = N2/3 T — (1+ /)
(1+ ven)(1+ 7&)2

converges in distribution to a Tracy-Widom distribution.

= This determines the asymptotic threshold  for a fixed PFA.
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Asymptotic behavior of Ty under H1

Recall that R := £YY* with

Y= (hh* +021)? Xicxen with Xi; % CN(0,1)

Hypothesis : p := ‘ s Ve
> Amax converges out of the bulk de MP [Baik-Silv-06]

H1 c
Amax Ai—)’ 02(1 + p) <1 + ;) .

» Consequently, Ty = i\;":*R converges to
K

Aspikcd = (]- + [)) (1 + %) > (]_ + \/2)2 —
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Analysis of the ROC curve

As Ty LN At Po[Tn > 7] is a rare event whenever v > At.

H1 .
As Ty AUDN Aspiked, P1[Tn < 7] is a rare event whenever v < Agpiked-

We show that

Under HO (resp. H1), Ty satisfies a large deviations principle in the
scale N with rate function & (resp. &)

Otherwise stated,

e—/Vgo(’Y)

e~ N&ab) |

R

Po[Tn > 7]
Pi[Tn <]

12

The set of couples (E(7), £1(7Y)) is called asymptotic error exponent
curve

10
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A few words on the proof

TN = Amax/(K_ltrR)

» The denominator of Ty is strongly localised around its limit o2 :

1
Jim i log P{K 'R ¢ 0% — 6,0 + 6]} = —o0

The large deviations of Ty are governed by those of Ajax

> Deviations of Amax under Hy (cf Ben Arous, Dembo, Guionnet)
Deviations of Amax under Hy (“spiked” model) (cf Maida)

11
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Comparison with a reference test

A statistics that drew a lot of attention in this context is the Extreme
Eigenvalue Ratio (EER) {=2=. One can do a very similar analysis, compare
the error exponent curves and show that GLR is more powerful than EER.

25

0.5 e i

0 0.001 0.002 0003 0.004 0.005 0.006 0.007

1

0.008 0.008 0.01

12



Large deviation principles : the model

13



Large deviation principles : the model

X, diagonal, deterministic with eigenvalues A\] > ... > A}

13



Large deviation principles : the model

X, diagonal, deterministic with eigenvalues A\] > ... > A}

R, finite rank perturbation

Yn:Xn‘f'Rn

13



Large deviation principles : the model

X, diagonal, deterministic with eigenvalues A\ > ... > A} such that
1 n
H1) - Oxn
( ) n Z; AT KX,
i—

with pux compactly supported,

R, finite rank perturbation

z:Xn‘f'Rn

13



Large deviation principles : the model
X, diagonal, deterministic with eigenvalues A\ > ... > A} such that
(H1) 1Zn:é—> A — a,\] — b
n - Al HXy A1 » \n

with px compactly supported, with edges of support a and b.

R, finite rank perturbation

z:Xn‘f'Rn

13



Large deviation principles : the model

X, diagonal, deterministic with eigenvalues A\ > ... > A} such that
1 n
(H1) . Z;Cﬁy — px, A} — a,A\; — b
i—

with px compactly supported, with edges of support a and b.

R, finite rank perturbation

X, =X, +R, =X, + ZGiG;n(Gin)*v
=t

with
91>~'~>9r0>0>9r0+1>"'>0r

13



Large deviation principles : the model

X, diagonal, deterministic with eigenvalues A\ > ... > A} such that
1 n
(H1) . Z;Cﬁy — px, A} — a,A\; — b
i—

with px compactly supported, with edges of support a and b.
R, finite rank perturbation
,
Xo=Xa+Ryn=X, + Z oiGin(Gin)*7
j=1
with
01 = "'>9rg >0>9rg+1 = >0r

and if G = (g1, ..., &) a random vector satisfying that E(e"‘2|gf2‘) < o0
for some a > 0 (and not charging any hyperplane)

13



Large deviation principles : the model

X, diagonal, deterministic with eigenvalues A\ > ... > A} such that
1 n
(H1) . Z;Chy — px, A} — a,A\; — b
i—

with px compactly supported, with edges of support a and b.

R, finite rank perturbation
Xo=Xo+ Ry =Xo+ > 0;G(G)",
j=1
with
912"'>9rg>0>0rg+1>"'>0r

and if G = (g1, ..., &) a random vector satisfying that IE(e"‘Z|gf2‘) < oo
for some a > 0 (and not charging any hyperplane)

G/ random vector whose entries are 1/,/n times independent copies of G

13



Large deviation principles : the model

X, diagonal, deterministic with eigenvalues A\ > ... > A} such that
1 n
(H1) . Z;Chy — px, A} — a,A\; — b
i—

with px compactly supported, with edges of support a and b.

R, finite rank perturbation
Xo=Xn+ Ro=Xo+ > 0,U7(UN)",
j=1
with
912"'>9rg>0>0rg+1>"'>0r

and if G = (g1, ..., &) a random vector satisfying that IE(e"‘Z|gf2‘) < oo
for some a > 0 (and not charging any hyperplane)

G/ random vector whose entries are 1/,/n times independent copies of G

and U obtained by orthonormalization.

13
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Large deviation principle : the statement

Theorem .

The law of the ry largest eigenvalues of X, satisfies a LDP in the scale n
with a good rate function L. It has a unique minimizer towards which we
have almost sure convergence.

This means that for any open set O C R,

lim inf = log P ((Xl,...j,o) e o) > —inf L,

n—oo N

and for any closed set F C R,

: 1 N N :

limsup — log P (()\1, ces ) € F) < —infL,
n—oo N F

Remark : minimizers depend on G only through its covariance matrix.

Important generalisation : we can relax the hypothesis on the extreme

eigenvalues, provided the law of % satisfies a LDP.

14



LDP for Wishart matrices

15



LDP for Wishart matrices

Consider the i.i.d. case when X, = 0. If G,, are n X r matrices whose rows
are i.i.d. copies of G and © = diag(6s,...,0,), we can study the
eigenvalues of W, = 1G©G, (see Fey, van der Hofstad, Klok, © = Id).

15



LDP for Wishart matrices

Consider the i.i.d. case when X, = 0. If G,, are n X r matrices whose rows
are i.i.d. copies of G and © = diag(6s,...,0,), we can study the
eigenvalues of W, = 1G©G, (see Fey, van der Hofstad, Klok, © = Id).

Theorem
The law of the eigenvalues of W, satisfies a LDP in the scale n with a

good rate function.

15



LDP for Wishart matrices

Consider the i.i.d. case when X, = 0. If G,, are n X r matrices whose rows
are i.i.d. copies of G and © = diag(6s,...,0,), we can study the
eigenvalues of W, = 1G©G, (see Fey, van der Hofstad, Klok, © = Id).
Theorem

The law of the eigenvalues of W, satisfies a LDP in the scale n with a
good rate function.

When G is a Gaussian vector with positive definite covariance matrix, the
rate function can be made very explicit.

15



LDP for Wishart matrices

Consider the i.i.d. case when X, = 0. If G,, are n X r matrices whose rows
are i.i.d. copies of G and © = diag(6s,...,0,), we can study the
eigenvalues of W, = 1G©G, (see Fey, van der Hofstad, Klok, © = Id).

Theorem

The law of the eigenvalues of W, satisfies a LDP in the scale n with a
good rate function.

When G is a Gaussian vector with positive definite covariance matrix, the
rate function can be made very explicit.

In the standard case,

1 4 (eh (eh
L(Oél,...70[,—)_EZ(z—l—IOgE).

15



LDP for Wishart matrices

Consider the i.i.d. case when X, = 0. If G,, are n X r matrices whose rows
are i.i.d. copies of G and © = diag(6s,...,0,), we can study the
eigenvalues of W, = 1G©G, (see Fey, van der Hofstad, Klok, © = Id).

Theorem

The law of the eigenvalues of W, satisfies a LDP in the scale n with a
good rate function.

When G is a Gaussian vector with positive definite covariance matrix, the
rate function can be made very explicit.

In the standard case,

r

1 (eh (eh
L(Oél,...70[,—)_EZ(z—l—IOgE).

i=1

From there it is easy to deduce the rate function for the largest eigenvalue

(x—1-logx) ifx>1
(x—1—logx) ifxe(0,1)

L) = {

NISN=

15



LDP for perturbed Coulomb gases

16



LDP for perturbed Coulomb gases

We consider the case when X, is now random with a law with density

~ e—ntrV(X)'

16



LDP for perturbed Coulomb gases

We consider the case when X, is now random with a law with density
~ e—ntrV(X)
We assume the U]'s to be a family of orthonormal vectors, either

deterministic or independent of X,,.

16



LDP for perturbed Coulomb gases

We consider the case when X, is now random with a law with density
~ e—ntrV(X)
We assume the U]'s to be a family of orthonormal vectors, either

deterministic or independent of X,,.

Theorem
Under appropriate assumptions on V| for any fixed k, the law of the k

largest eigenvalues of X, satisfies a large deviation principle with a good
rate function.

16



LDP for perturbed Coulomb gases

We consider the case when X, is now random with a law with density
~ e—ntrV(X)
We assume the U]'s to be a family of orthonormal vectors, either

deterministic or independent of X,,.

Theorem
Under appropriate assumptions on V| for any fixed k, the law of the k

largest eigenvalues of X, satisfies a large deviation principle with a good
rate function.

Rq : we first condition on the deviation of the eigenvalues of X, so that

we can consider those as outliers.
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Rough sketch of proof

f(2) = det ([Gig'j(z)} [y diag (071, 9;1)) 7

Glj(2) = (U], (z = Xa) 2 U).

1)

KP(2) = (6P (z — ! L &ik)gi(k)

and ¢/, = £+ >°4_, &i(k)g, gi(k) then f,(z) = Po ,(K"(2),C")
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Conclusion

Can we use large deviation principles of this type
to analyse the performance for some other models
relevant in wireless communication context ?
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