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Source detection in cooperative spectrum
sensing

Secondary sensors try to find a bandwidth to occupy. Those K sensors

can share information, each of them receiving N samples of the signal.
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Modelisation of the statistical test

We want to test

◮ Hypothesis H0 : No signal. Secondary sensor number k receives
a series of data yk (n) of length N of the form :

yk (n) = wk(n) , n = 1 . . .N

where wk(n) ∼ CN (0, σ2) is a white noise.

◮ Hypothesis H1 : Presence of a signal. The data received by
sensor number k is now of the form :

yk(n) = hk s(n) + wk(n) , n = 1 . . .N

where s(n) is a Gaussian primary signal and hk the fading
coefficient associated to the secondary sensor k .

As σ and h are unknown, the Neyman-Pearson test cannot be
implemented.
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We gather the observation in the matrix

Y = [yk(n)]k=1:K , n=1:N

◮ Under H0, the entries of Y are i.i.d. CN (0, σ2). The likelihood
writes :

p0(Y; σ2) = (πσ2)−NK exp

(
− N

σ2
tr R

)
.

where R = 1
N
YY∗ is the empirical covariance matrix.

◮ Under H1, the column vectors of Y are i.i.d. CN (0,hh∗ + σ2IK )
where h = [h1, . . . , hK ]T is the fading vector corresponding to the
K secondary sensors. The likelihood writes :

p1(Y;h, σ2) = (πK det(hh∗+σ2IK ))−N exp
(
−Ntr (R(hh∗ + σ2IK )−1)

)
.
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Generalized Likelihood Ratio Test (GLRT)

Recall that σ2,h are unknown. The GLRT will reject H0 for high values
of the statistics :

suph,σ2p1(Y;h, σ2)

supσ2p0(Y; σ2)

After some standard computations, we get the following test :

Reject H0 whenever the statistics :

TN :=
λmax

1
K

trR

is above the threshold γ

where λmax is the largest eigenvalue of R := 1
N
YY∗.
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For a given threshold γ, we define :

◮ the type I Error (probability of false alarm) P0[TN > γ] is the
probability of deciding H1 when H0 holds,

◮ the type II Error P1[TN < γ] is the probability of deciding H0
when H1 holds

(N.B. Type II Error depends on h and σ2)
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Performance analysis of the GLRT

For a given threshold γ, we define :

◮ the type I Error (probability of false alarm) P0[TN > γ] is the
probability of deciding H1 when H0 holds,

◮ the type II Error P1[TN < γ] is the probability of deciding H0
when H1 holds

(N.B. Type II Error depends on h and σ2)

The Receiver Operating Characterictic (ROC curve) is the set of points
(Type I Error, Type II Error) for all possible thresholds.

ROC := {(P0[TN > γ], P1[TN < γ]) : γ ∈ R+} .

⇒ We study the ROC curve in the asymptotic regime :

K → ∞, N → ∞, K
N
→ c ∈ (0, 1)
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Recall that R := 1
N
YY∗ with Y having i.i.d. entries CN (0, σ2).

◮ By the law of large numbers,

1

K
trR

(H0)−−−−→
N→∞

σ2

◮ λmax
(H0)−−−−→

N→∞
σ2(1 +

√
c)2 the right edge of the Marcenko-Pastur

distribution and has Tracy-Widom fluctuations.

◮ We get that, if TN = λmax
1
K
trR

and cN = K
N

,

T̃N = N2/3 TN − (1 +
√

cN)2

(1 +
√

cN)(1 + 1√
cN

)1/3

converges in distribution to a Tracy-Widom distribution.

⇒ This determines the asymptotic threshold γ for a fixed PFA.
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Asymptotic behavior of TN under H1

Recall that R := 1
N
YY∗ with

Y =
(
hh∗ + σ2IK

)1/2
XK×N with Xi ,j

iid∼ CN (0, 1)

Hypothesis : ρ := ‖h‖2

σ2 >
√

c

◮ λmax converges out of the bulk de MP [Baik-Silv-06]

λmax
(H1)−−−−→

N→∞
σ2(1 + ρ)

(
1 +

c

ρ

)
.

◮ Consequently, TN = λmax
1
K

tr R
converges to

λspiked := (1 + ρ)

(
1 +

c

ρ

)
> (1 +

√
c)2 := λ+ .
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Analysis of the ROC curve

As TN
(H0)−−−→ λ+, P0[TN > γ] is a rare event whenever γ > λ+.

As TN
(H1)−−−→ λspiked, P1[TN < γ] is a rare event whenever γ < λspiked.

We show that

Under H0 (resp. H1), TN satisfies a large deviations principle in the
scale N with rate function E0 (resp. E1)

Otherwise stated,

P0[TN > γ] ≃ e−N E0(γ)

P1[TN < γ] ≃ e−N E1(γ) .

The set of couples (E0(γ), E1(γ)) is called asymptotic error exponent
curve
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A few words on the proof

TN = λmax/(K−1trR)

◮ The denominator of TN is strongly localised around its limit σ2 :

lim
N→∞

1

N
log P{K−1trR /∈ [σ2 − δ, σ2 + δ]} = −∞

The large deviations of TN are governed by those of λmax

◮ Deviations of λmax under H0 (cf Ben Arous, Dembo, Guionnet)
Deviations of λmax under H1 (“spiked” model) (cf Mäıda)
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Large deviation principles : the model

Xn diagonal, deterministic with eigenvalues λn
1 > . . . > λn

n such that

(H1)
1

n

n∑

i=1

δλn
i
−→ µX , λn

1 −→ a, λn
n −→ b

with µX compactly supported, with edges of support a and b.

Rn finite rank perturbation

X̃n = Xn + Rn = Xn +

r∑

j=1

θiU
n
i (Un

i )∗,

with
θ1 > · · · > θr0 > 0 > θr0+1 > · · · > θr

and if G = (g1, . . . , gr ) a random vector satisfying that E(eα
P

|g2
i |) < ∞

for some α > 0 (and not charging any hyperplane)

G n
i random vector whose entries are 1/

√
n times independent copies of G

and Un
i obtained by orthonormalization.
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Theorem
The law of the r0 largest eigenvalues of X̃n satisfies a LDP in the scale n

with a good rate function L. It has a unique minimizer towards which we

have almost sure convergence.

This means that for any open set O ⊂ R
r0 ,

lim inf
n→∞

1

n
log P

(
(λ̃1, . . . , λ̃r0) ∈ O

)
> − inf

0
L,

and for any closed set F ⊂ R
r0 ,

lim sup
n→∞

1

n
log P

(
(λ̃1, . . . , λ̃r0) ∈ F

)
6 − inf

F
L,

Remark : minimizers depend on G only through its covariance matrix.

Important generalisation : we can relax the hypothesis on the extreme

eigenvalues, provided the law of G√
n

satisfies a LDP.
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LDP for Wishart matrices

Consider the i.i.d. case when Xn = 0. If Gn are n × r matrices whose rows
are i.i.d. copies of G and Θ = diag(θ1, . . . , θr ), we can study the
eigenvalues of Wn = 1

n
G∗

n ΘGn (see Fey, van der Hofstad, Klok, Θ = Id).

Theorem
The law of the eigenvalues of Wn satisfies a LDP in the scale n with a

good rate function.

When G is a Gaussian vector with positive definite covariance matrix, the

rate function can be made very explicit.

In the standard case,

L(α1, . . . , αr ) =
1

2

r∑

i=1

(
αi

θi

− 1 − log
αi

θi

)
.

From there it is easy to deduce the rate function for the largest eigenvalue

Lmax(x) =

{
1
2 (x − 1 − log x) if x > 1
r
2 (x − 1 − log x) if x ∈ (0, 1)
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LDP for perturbed Coulomb gases

We consider the case when Xn is now random with a law with density
∼ e−ntrV (X ).
We assume the Un

i ’s to be a family of orthonormal vectors, either
deterministic or independent of Xn.

Theorem
Under appropriate assumptions on V , for any fixed k , the law of the k

largest eigenvalues of X̃n satisfies a large deviation principle with a good

rate function.

Rq : we first condition on the deviation of the eigenvalues of Xn so that

we can consider those as outliers.
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1 , . . . , θ−1

r

))
,

with
G n

i ,j(z) = 〈Un
i , (z − Xn)

−1Un
j 〉.
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fn(z) = det
([

G n
i ,j(z)

]r

i ,j=1
− diag

(
θ−1
1 , . . . , θ−1

r

))
,

with
G n

i ,j(z) = 〈Un
i , (z − Xn)

−1Un
j 〉.

If

K n
i ,j(z) = 〈G n

i , (z − Xn)
−1G n

j 〉 =
1

n

n∑

k=1

gi(k)gj(k)

z − λk

and C n
i ,j = 1

n

∑n
k=1 gi(k)gj(k) then fn(z) = PΘ,r (K

n(z), C n)
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Conclusion

Can we use large deviation principles of this type

to analyse the performance for some other models

relevant in wireless communication context ?


