Norm of polynomials in Large Random Matrices

Camille Mâle

École Normale Supérieure de Lyon

Télécom-Paris Tech, 12 October 2010

Introduction

The Gaussian Unitary Ensemble (GUE)

Definition

We said that $X^{(N)}$ is an $N \times N$ GUE matrix if $X^{(N)} = X^{(N)*}$ with entries $X^{(N)} = (X_{n,m})_{1 \leq n,m \leq N}$, where

$$\left((X_{n,n})_{1\leqslant n\leqslant N},(\sqrt{2}\mathrm{Re}\ (X_{n,m}),\sqrt{2}\mathrm{Im}\ (X_{n,m})\)_{1\leqslant n< m\leqslant N}\right)$$

is a centered Gaussian vector with covariance matrix $\frac{1}{N}\mathbf{1}_{N^2}$.

Classical results

Let $X_N \sim \text{GUE}$. Denote the eigenvalues of $X^{(N)}$ by $\lambda_1 \leqslant \ldots \leqslant \lambda_N$.

Theorem (Wigner 55)

The empirical spectral measure of $X^{(N)}$

$$L(X^{(N)}) = \frac{1}{N} \sum_{i=1}^{N} \delta_{\lambda_i}$$

converges when $N \to \infty$ to the semicircular law with radius 2.

Theorem

When $N \to \infty$

$$\lambda_1 \rightarrow -2, \quad \lambda_N \rightarrow 2.$$

Reformulation

• Convergence of $L(X^{(N)})$: a.s. and in \mathbb{E} in moments

$$L_N(P) = \frac{1}{N} \sum_{i=1}^N P(\lambda_i) = \frac{1}{N} \operatorname{Tr} [P(X^{(N)})] \xrightarrow[N \to \infty]{} \tau[P] := \int P d\sigma,$$

for all polynomial P, with $d\sigma(t) = \frac{1}{2\pi}\sqrt{4-t^2} \ \mathbf{1}_{|t| \leq 2} \ dt$ the semicircle distribution.

Reformulation

• Convergence of $L(X^{(N)})$: a.s. and in \mathbb{E} in moments

$$L_N(P) = \frac{1}{N} \sum_{i=1}^N P(\lambda_i) = \frac{1}{N} \operatorname{Tr} \big[P(X^{(N)}) \big] \xrightarrow[N \to \infty]{} \tau[P] := \int P d\sigma,$$

for all polynomial P, with $d\sigma(t) = \frac{1}{2\pi} \sqrt{4 - t^2} \, \mathbf{1}_{|t| \leq 2} \, dt$ the semicircle distribution.

• Convergence of extremal eigenvalues : a.s.

$$||X^{(N)}|| \underset{N\to\infty}{\longrightarrow} 2,$$

with $\|\cdot\|$ the operator norm:

$$||M|| = \sqrt{\rho(M^*M)}$$

= $\rho(M)$ if M Hermitian

where ρ is the spectral radius.

The context of this talk

The protagonists

- $\mathbf{X}_N = (X_1^{(N)}, \dots, X_p^{(N)})$ family of independent $N \times N$ GUE matrices,
- $\mathbf{Y}_N = (Y_1^{(N)}, \dots, Y_q^{(N)})$ family of arbitrary $N \times N$ matrices.

The context of this talk

The protagonists

- $\mathbf{X}_N = (X_1^{(N)}, \dots, X_p^{(N)})$ family of independent $N \times N$ GUE matrices,
- $\mathbf{Y}_N = (Y_1^{(N)}, \dots, Y_q^{(N)})$ family of arbitrary $N \times N$ matrices.

We want to

extend such results for matrices of the form

$$M_N = P(\mathbf{X}_N, \mathbf{Y}_N, \mathbf{Y}_N^*),$$

where P is any non commutative polynomial in p+2q indeterminates,

The context of this talk

The protagonists

- $\mathbf{X}_N = (X_1^{(N)}, \dots, X_p^{(N)})$ family of independent $N \times N$ GUE matrices,
- $\mathbf{Y}_N = (Y_1^{(N)}, \dots, Y_q^{(N)})$ family of arbitrary $N \times N$ matrices.

We want to

extend such results for matrices of the form

$$M_N = P(\mathbf{X}_N, \mathbf{Y}_N, \mathbf{Y}_N^*),$$

where P is any non commutative polynomial in p+2q indeterminates,

express the asymptotic statistics in elegant terms with

$$m = P(\mathbf{x}, \mathbf{y}, \mathbf{y}^*).$$

Free Probability

Definition of a *-probability space $(\mathcal{A},\cdot^*, au)$

 ${\mathcal A}$: unital ${\mathbb C}$ -algebra,

 \cdot^* : antilinear involution such that $(ab)^* = b^*a^* \ orall a, b \in \mathcal{A}$,

au : linear form such that $au[\mathbf{1}]=1$.

Definition of a *-probability space (A, \cdot^*, τ)

 \mathcal{A} : unital \mathbb{C} -algebra,

 \cdot^* : antilinear involution such that $(ab)^* = b^*a^* \ orall a, b \in \mathcal{A}$,

au: linear form such that $au[\mathbf{1}]=1$.

Examples

- Commutative space: Given a probability space $(\Omega, \mathcal{F}, \mathbb{P})$, consider $(L^{\infty}(\Omega, \mu), \bar{\cdot}, \mathbb{E})$
- Matrix spaces: $(M_N(\mathbb{C}), \cdot^*, \frac{1}{N}Tr)$

Definition of a *-probability space $(\mathcal{A}, \cdot^*, \tau)$

- \mathcal{A} : unital \mathbb{C} -algebra,
- \cdot^* : antilinear involution such that $(ab)^* = b^*a^* \ \forall a,b \in \mathcal{A}$,
- au: linear form such that $au[\mathbf{1}]=1$. We also assume
 - τ is tracial: $\tau[ab] = \tau[ba] \ \forall a, b \in \mathcal{A}$,
 - τ is a faithful state: $\tau[a^*a] \ge 0, \forall a \in \mathcal{A}$ and vanishes iff a = 0.
 - \mathcal{A} is a C^* -algebra: it is equipped with a norm $\|\cdot\|$ such that $\|a^*a\| = \|a\|^2 = \|a^*\|^2$.

Examples

- Commutative space: Given a probability space $(\Omega, \mathcal{F}, \mathbb{P})$, consider $(L^{\infty}(\Omega, \mu), \bar{\cdot}, \mathbb{E})$
- Matrix spaces: $(M_N(\mathbb{C}), \cdot^*, \frac{1}{N}Tr)$

Definition of a *-probability space $(\mathcal{A}, \cdot^*, \tau)$

 \mathcal{A} : unital \mathbb{C} -algebra,

- \cdot^* : antilinear involution such that $(ab)^* = b^*a^* \ \forall a,b \in \mathcal{A}$,
- au: linear form such that $au[\mathbf{1}]=1$. We also assume
 - τ is tracial: $\tau[ab] = \tau[ba] \ \forall a, b \in \mathcal{A}$,
 - τ is a faithful state: $\tau[a^*a] \ge 0, \forall a \in \mathcal{A}$ and vanishes iff a = 0.
 - \mathcal{A} is a C^* -algebra: it is equipped with a norm $\|\cdot\|$ such that $\|a^*a\| = \|a\|^2 = \|a^*\|^2$.

Examples

- Commutative space: Given a probability space $(\Omega, \mathcal{F}, \mathbb{P})$, consider $(L^{\infty}(\Omega, \mu), \bar{\cdot}, \mathbb{E})$ and the infinity norm $\|\cdot\|_{\infty}$,
- Matrix spaces: $(M_N(\mathbb{C}), \cdot^*, \frac{1}{N} \mathrm{Tr})$ with the operator norm $\|M\| = \sqrt{\rho(M^*M)}$.

Non commutative random variables

Proposition

If $a=a^*$ then there exists a compactly supported probability measure μ on $\mathbb R$ such that $\forall P$ polynomial $\tau \big[P(a) \ \big] = \int P d\mu$ and $\|a\| = \inf \Big\{ A \geq 0 \ \Big| \ \mu \big(\ [-A,A] \ \big) = 1 \Big\}.$

Non commutative random variables

Proposition

If $a=a^*$ then there exists a compactly supported probability measure μ on $\mathbb R$ such that $\forall P$ polynomial $\tau \big[P(a) \ \big] = \int P d\mu$ and $\|a\| = \inf \Big\{ A \geq 0 \ \Big| \ \mu \big(\ [-A,A] \ \big) = 1 \Big\}.$

Definition

- Elements of A: non commutative random variables (n.c.r.v.),
- Set of numbers $\tau[P(\mathbf{a}, \mathbf{a}^*)], \forall P$ non commutative polynomial : law of a family $\mathbf{a} = (a_1, \dots, a_p) \in \mathcal{A}^p$ (generalized moments).
- $\tau[P(\mathbf{a}_N, \mathbf{a}_N^*)] \xrightarrow[N \to \infty]{} \tau[P(a, a^*)] \ \forall P$: convergence in law $\mathbf{a}_N \xrightarrow[N \to \infty]{} \mathbf{a}$.

The relation of freeness

Definition of freeness

The families of n.c.r.v. $\mathbf{a}_1, \dots, \mathbf{a}_p$ are free iff $\forall K \in \mathbb{N}, \forall P_1, \dots, P_K$ non commutative polynomials

$$\tau\Big[P_1(\mathbf{a}_{i_1},\mathbf{a}_{i_1}^*)\dots P_K(\mathbf{a}_{i_K},\mathbf{a}_{i_K}^*)\Big]=0$$

as soon as $i_1 \neq i_2 \neq \ldots \neq i_K$ and $\tau [P_k(\mathbf{a}_{i_k}, \mathbf{a}_{i_k}^*)] = 0$ for $k = 1, \ldots, K$.

The relation of freeness

Definition of freeness

The families of n.c.r.v. $\mathbf{a}_1, \dots, \mathbf{a}_p$ are free iff $\forall K \in \mathbb{N}, \forall P_1, \dots, P_K$ non commutative polynomials

$$\tau\Big[P_1(\mathbf{a}_{i_1},\mathbf{a}_{i_1}^*)\dots P_K(\mathbf{a}_{i_K},\mathbf{a}_{i_K}^*)\Big]=0$$

as soon as $i_1 \neq i_2 \neq \ldots \neq i_K$ and $\tau [P_k(\mathbf{a}_{i_k}, \mathbf{a}_{i_k}^*)] = 0$ for $k = 1, \ldots, K$.

Independence vs freeness

- if a and b are centered $(\tau[a] = \tau[b] = 0)$ free n.c.r.v. then $\tau[abab] = 0$,
- if a and b are independent centered real random variables, $\mathbb{E}[abab] = \mathbb{E}[a^2]\mathbb{E}[b^2] = 0$ iff a or b are non random.

Consider

- $\mathbf{X}_N = (X_1^{(N)}, \dots, X_p^{(N)})$ be independent $N \times N$ GUE matrices
- $\mathbf{Y}_N = (Y_1^{(N)}, \dots, Y_q^{(N)}) N \times N$ matrices independent with \mathbf{X}_N .

Consider

- $\mathbf{X}_N = (X_1^{(N)}, \dots, X_p^{(N)})$ be independent $N \times N$ GUE matrices
- $\mathbf{Y}_N = (Y_1^{(N)}, \dots, Y_q^{(N)}) \ N \times N$ matrices independent with \mathbf{X}_N .

Assumption

 \exists n.c.r.v. $\mathbf{y}=(y_1,\ldots,y_q)$ s.t. for \mathbf{Y}_N viewed as n.c.r.v. in $(\mathsf{M}_k(\mathbb{C}),\cdot^*,\tau_N:=\frac{1}{N}\mathrm{Tr})$ then when $N\to\infty$

$$\mathbf{Y}_N \xrightarrow{\mathcal{L}^{n.c.}} \mathbf{y}$$
 i.e. $\tau_N[P(\mathbf{Y}_N, \mathbf{Y}_N^*)] \to \tau[P(\mathbf{y}, \mathbf{y}^*)] \ \forall P.$

Voiculescu (91)

Then

$$\exists$$
 n.c.r.v. $\mathbf{x} = (x_1, \dots, x_p)$ such that

$$(\mathbf{X}_N, \mathbf{Y}_N) \xrightarrow{\mathcal{L}^{n.c.}} (\mathbf{x}, \mathbf{y})$$
 i.e. $\tau_N[P(\mathbf{X}_N, \mathbf{Y}_N, \mathbf{Y}_N^*)] \to \tau[P(\mathbf{x}, \mathbf{y}, \mathbf{y}^*)] \ \forall P,$

a.s. and in $\mathbb E$ when $N \to \infty$ and the law of $(\mathbf x, \mathbf y)$ is given by

- $x_i = x_i^*$ and x_i has the semicircular law: $\tau[P(x_i)] = \int P d\sigma$
- the families $(x_1, \ldots, x_p, \mathbf{y})$ are free.

Voiculescu (91)

Then

$$\exists$$
 n.c.r.v. $\mathbf{x} = (x_1, \dots, x_p)$ such that

$$(\mathbf{X}_N, \mathbf{Y}_N) \xrightarrow{\mathcal{L}^{n.c.}} (\mathbf{x}, \mathbf{y})$$
 i.e. $\tau_N[P(\mathbf{X}_N, \mathbf{Y}_N, \mathbf{Y}_N^*)] \to \tau[P(\mathbf{x}, \mathbf{y}, \mathbf{y}^*)] \ \forall P,$

a.s. and in $\mathbb E$ when $N\to\infty$ and the law of $(\mathbf x,\mathbf y)$ is given by

- $x_i = x_i^*$ and x_i has the semicircular law: $\tau[P(x_i)] = \int P d\sigma$
- the families $(x_1, \ldots, x_p, \mathbf{y})$ are free.

If $M_N = P(\mathbf{X}_N, \mathbf{Y}_N, \mathbf{Y}_N^*)$ is hermitian we obtain the convergence of its empirical spectral measure and the limit can be computed in term of $m = P(\mathbf{x}, \mathbf{y}, \mathbf{y}^*)$.

Strong asymptotic freeness

The problem

State assumptions on \mathbf{Y}_N for which

$$\underset{N \rightarrow \infty}{\lim} \|P(\mathbf{X}_N, \mathbf{Y}_N, \mathbf{Y}_N^*)\| = \|P(\mathbf{x}, \mathbf{y}, \mathbf{y}^*)\|,$$

for all polynomial P.

Strong asymptotic freeness

The problem

State assumptions on \mathbf{Y}_N for which

$$\lim_{N \to \infty} \lVert P(\mathbf{X}_N, \mathbf{Y}_N, \mathbf{Y}_N^*) \rVert = \lVert P(\mathbf{x}, \mathbf{y}, \mathbf{y}^*) \rVert,$$

for all polynomial P.

Previous results: for $\mathbf{Y}_N = \mathbf{0}$

- Haagerup and Thorbjørnsen (05): pioneering works,
- Schultz (0?): $X_N \sim \text{GOE}$, GSE,
- Capitaine and Donati-Martin (0?): X_N Wigner with symmetric law of entries and a concentration assumption; X_N Wishart.

Strong asymptotic freeness for (X_N, Y_N)

Assume that \mathbf{Y}_N satisfies

Strong asymptotic freeness for (X_N, Y_N)

Assume that \mathbf{Y}_N satisfies

Strong asymptotic freeness for (X_N, Y_N)

Assume that \mathbf{Y}_N satisfies

- **1** Moments assumption: \exists **y** = (y_1, \dots, y_q) such that $\mathbf{Y}_N \xrightarrow{\mathcal{L}^{n.c.}}$ **y** and $\limsup_{N \to \infty} \|Y_j^{(N)}\| < \infty$,
- ② Concentration assumption: $\exists \sigma > 0$ s.t. $\forall N$ the joint law of the entries of \mathbf{Y}_N satisfies a Poincaré's inequality with constant σ/N i.e. $\forall f: \mathbb{R}^{2qN^2} \to \mathbb{C}$ of class C^1 s.t. $\mathbb{E}[|f(\mathbf{Y}_N)|^2] < \infty$ one has

$$\mathbb{V}$$
ar $(f(\mathbf{Y}_N)) \leq \sigma/N \mathbb{E}[\|\nabla f(\mathbf{Y}_N)\|^2],$

Strong asymptotic freeness for (X_N, Y_N)

Assume that \mathbf{Y}_N satisfies

- **1** Moments assumption: \exists **y** = (y_1, \dots, y_q) such that $\mathbf{Y}_N \xrightarrow{\mathcal{L}^{n.c.}}$ **y** and $\limsup_{N \to \infty} \|Y_j^{(N)}\| < \infty$,
- ② Concentration assumption: $\exists \sigma > 0$ s.t. $\forall N$ the joint law of the entries of \mathbf{Y}_N satisfies a Poincaré's inequality with constant σ/N i.e. $\forall f: \mathbb{R}^{2qN^2} \to \mathbb{C}$ of class C^1 s.t. $\mathbb{E}[|f(\mathbf{Y}_N)|^2] < \infty$ one has

$$\mathbb{V}$$
ar $(f(\mathbf{Y}_N)) \leq \sigma/N \mathbb{E}[\|\nabla f(\mathbf{Y}_N)\|^2],$

Rate of convergence for generalized Stieltjes transforms.

Strong asymptotic freeness for (X_N, Y_N)

Assume that \mathbf{Y}_N satisfies

- **1** Moments assumption: $\exists \mathbf{y} = (y_1, \dots, y_q)$ such that $\mathbf{Y}_N \xrightarrow{\mathcal{L}^{n.c.}} \mathbf{y}$ and $\limsup_{N \to \infty} \|Y_j^{(N)}\| < \infty$,
- ② Concentration assumption: $\exists \sigma > 0$ s.t. $\forall N$ the joint law of the entries of \mathbf{Y}_N satisfies a Poincaré's inequality with constant σ/N i.e. $\forall f: \mathbb{R}^{2qN^2} \to \mathbb{C}$ of class C^1 s.t. $\mathbb{E}[|f(\mathbf{Y}_N)|^2] < \infty$ one has

$$\mathbb{V}\operatorname{ar}(f(\mathbf{Y}_N)) \leq \sigma/N \mathbb{E}[\|\nabla f(\mathbf{Y}_N)\|^2],$$

Rate of convergence for generalized Stieltjes transforms.

Then $\lim_{N\to\infty} ||P(\mathbf{X}_N, \mathbf{Y}_N, \mathbf{Y}_N^*)|| = ||P(\mathbf{x}, \mathbf{y}, \mathbf{y}^*)||$ for all polynomial P.

The linearization trick

To show $\forall P, \|P(\mathbf{X}_N, \mathbf{Y}_N, \mathbf{Y}_N^*)\| \xrightarrow[N \to \infty]{} \|P(\mathbf{x}, \mathbf{y}, \mathbf{y}^*)\|$ a.s. , It is enough to show:

for any self adjoint degree one polynomial $L \in M_k(\mathbb{C}) \otimes \mathbb{C}\langle \mathbf{x}, \mathbf{y}, \mathbf{y}^* \rangle$, for any $\varepsilon > 0$,

$$\mathrm{Sp}\big(\ L(\mathbf{X}_N,\mathbf{Y}_N,\mathbf{Y}_N^*)\ \big) \subset \mathrm{Sp}\big(\ L(\mathbf{x},\mathbf{y},\mathbf{y}^*)\ \big) + (-\varepsilon,\varepsilon)$$

almost surely for N large enough.

$$L(\mathbf{x},\mathbf{y},\mathbf{y}^*) = \sum_{i,j=1}^k \epsilon_{i,j} \otimes L_{i,j} = \begin{pmatrix} L_{1,1}(\mathbf{x},\mathbf{y},\mathbf{y}^*) & \dots & L_{1,k}(\mathbf{x},\mathbf{y},\mathbf{y}^*) \\ \vdots & & \vdots \\ L_{k,1}(\mathbf{x},\mathbf{y},\mathbf{y}^*) & \dots & L_{k,k}(\mathbf{x},\mathbf{y},\mathbf{y}^*) \end{pmatrix}.$$

Application

Convergence of spectra

Proposition

If $P(X_N, Y_N, Y_N^*)$ is hermitian then $\forall \varepsilon, \exists N_0 \text{ s.t. } \forall N \geq N_0$

$$\operatorname{Sp}(P(\mathbf{X}_N, \mathbf{Y}_N, \mathbf{Y}_N^*)) \subset \operatorname{Sp}(P(\mathbf{x}, \mathbf{y}, \mathbf{y}^*)) + (-\varepsilon, \varepsilon)$$

Given μ_1, \ldots, μ_q compactly supported probability measures on \mathbb{R} find $\mathbf{D}_N = (D_1^{(N)}, \ldots, D_q^{(N)})$ for which the empirical spectral distribution of $D_i^{(N)}$ converges to μ_j , $j=1,\ldots,q$.

Given μ_1, \ldots, μ_q compactly supported probability measures on $\mathbb R$ find $\mathbf D_N = (D_1^{(N)}, \ldots, D_q^{(N)})$ for which the empirical spectral distribution of $D_j^{(N)}$ converges to μ_j , $j=1,\ldots,q$.

- Cumulative distribution functions: $\forall t \in \mathbb{R}, F_j(t) = \mu_j(]-\infty, t]$), $j = 1, \ldots, q$,
- Generalized inverses: $\forall u \in]0,1], F_j^{-1}(u) = \inf\{t \in | F_j(t) \ge u\},$ $F_j^{-1}(0) = \lim_{u \to 0^+} F_j^{-1}(u).$

Given μ_1, \ldots, μ_q compactly supported probability measures on $\mathbb R$ find $\mathbf D_N = (D_1^{(N)}, \ldots, D_q^{(N)})$ for which the empirical spectral distribution of $D_j^{(N)}$ converges to μ_j , $j=1,\ldots,q$.

- Cumulative distribution functions: $\forall t \in \mathbb{R}, F_j(t) = \mu_j(]-\infty, t]$), $j = 1, \ldots, q$,
- Generalized inverses: $\forall u \in]0,1], F_j^{-1}(u) = \inf\{t \in | F_j(t) \ge u\},$ $F_j^{-1}(0) = \lim_{u \to 0^+} F_j^{-1}(u).$

Define
$$\mathbf{D}_N = (D_1^{(N)}, \dots, D_q^{(N)})$$
 where for $j = 1, \dots, q$

$$D_j^{(N)} = \operatorname{diag}\left(F_j^{-1}\left(\frac{0}{N}\right), \dots, F_j^{-1}\left(\frac{N-1}{N}\right)\right).$$

Proposition

If the support of the μ_j consists in a single interval then strong asymptotic freeness holds for $(\mathbf{X}_N, \mathbf{D}_N)$.

Wishart matrices

Definition

Wishart matrix with parameter
$$r/s$$
: $W_N=M_NM_N^*$ where $M_N=(M_{n,m})_{\substack{1\leqslant n\leqslant rN\\1\leqslant m\leqslant sN}}$, and

$$(\sqrt{2}\mathrm{Re}\ (M_{n,m}),\sqrt{2}\mathrm{Im}\ (M_{n,m})\)_{1\leqslant n\leqslant rN,1\leqslant m\leqslant sN}$$

is a centered Gaussian vector with covariance matrix $\frac{1}{rN}\mathbf{1}_{2rsN^2}$.

Wishart matrices

Definition

Wishart matrix with parameter r/s: $W_N=M_NM_N^*$ where $M_N=(M_{n,m})_{\substack{1\leqslant n\leqslant rN\\1\leqslant m\leqslant sN}}$, and

$$(\sqrt{2} \mathrm{Re} \; (M_{n,m}), \sqrt{2} \mathrm{Im} \; (M_{n,m}) \;)_{1 \leqslant n \leqslant rN, 1 \leqslant m \leqslant sN}$$

is a centered Gaussian vector with covariance matrix $\frac{1}{rN}\mathbf{1}_{2rsN^2}$.

Proposition

Strong asymptotic freeness holds for Wishart matrices with rational parameter (together with \mathbf{Y}_N) instead of GUE matrices

Non white Wishart matrices

Definition

Non white Wishart matrix: $Z_N = \sum_N^{1/2} W_N \sum_N^{1/2}$ where

- W_N Wishart,
- Σ_N non negative definite Hermitian.

Proposition

Strong asymptotic freeness holds for matrices $\mathbf{Z}_N = (Z_1^{(N)}, \dots, Z_p^{(N)})$ where the matrices $\Sigma_N^{1/2}$'s are of the diagonal form as before

Block matrices

Proposition

The operator norm of block matrices

$$\begin{pmatrix} P_{1,1}(\mathbf{X}_N, \mathbf{Y}_N, \mathbf{Y}_N^*) & \dots & P_{1,\ell}(\mathbf{X}_N, \mathbf{Y}_N, \mathbf{Y}_N^*) \\ \vdots & & & \vdots \\ P_{\ell,1}(\mathbf{X}_N, \mathbf{Y}_N, \mathbf{Y}_N^*) & \dots & P_{\ell,\ell}(\mathbf{X}_N, \mathbf{Y}_N, \mathbf{Y}_N^*) \end{pmatrix},$$

converges a.s. as $N \to \infty$.

Rectangular block matrices

"Channel matrix" in the context of telecommunication

$$H = \begin{pmatrix} A_1 & A_2 & \dots & A_L & \mathbf{0} & \dots & & \dots & \mathbf{0} \\ \mathbf{0} & A_1 & A_1 & \dots & A_L & \mathbf{0} & & & \vdots \\ \vdots & \mathbf{0} & A_1 & A_2 & \dots & A_L & \mathbf{0} & & & \\ & & \ddots & \ddots & \ddots & & \ddots & \vdots & \vdots \\ \vdots & & & \ddots & \ddots & \ddots & \ddots & \ddots & \mathbf{0} \\ \mathbf{0} & \dots & & \dots & \mathbf{0} & A_1 & A_2 & \dots & A_L \end{pmatrix},$$

 $(A_I)_{1\leqslant \ell\leqslant L}$ are $n_R\times n_T$ matrices with i.i.d. complex Gaussian entries with mean m_ℓ and variance σ_ℓ^2/N .

Rectangular block matrices

Proposition

If $m_\ell=0$, $\ell=1..L$, then the norm of H converges for $n_R=rN$ and $n_T=tN$.

Rectangular block matrices

Proposition

If $m_{\ell}=0$, $\ell=1..L$, then the norm of H converges for $n_{R}=rN$ and $n_{T}=tN$.

If $m_{\ell} \neq 0$: finite rank deformation...

Thank you for your attention

