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1 Abstract
•Rician fading multiple-input multiple-output (MIMO)

channel with a variance profile

•Relevant to cooperative small-cell systems where sev-
eral densely deployed base stations (BSs) cooperatively
serve multiple user terminals (UTs) [1]

• Large system analysis assuming many BSs or BS-
antennas and UTs

•Central limit theorem (CLT) of the mutual information
and explicit expression of the asymptotic variance

•Application: Approximation of the outage probability

•Asymptotic performance predictions are accurate for
small channel dimensions

2 System model
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•Uplink channel from n single-antenna UTs to B BSs
with M antennas each

•BSs connected to a central station (CS) via infinite-
capacity backhaul links

•CS jointly processes the signals from all BSs

•Full CSI at the CS

2.1 Uplink channel model

N × n MIMO channel from n user terminals (UTs) to a
receiver with N = BM distributed antennas:

y =
√
ρHx + n

where

• x ∼ CN (0, In): transmit vector

• n ∼ CN (0, IN): noise

• H = [HT
1 · · ·HT

B]T ∈ CBM×n: aggregate channel

Rician fading channel:

[Hb]m,k =

√
(1− κbk) `bk

n
wb
mk︸ ︷︷ ︸

Rayleigh component

+

√
κbk `bk
n

ejφ
b
mk︸ ︷︷ ︸

LOS component

where

• wb
mk ∼ CN (0, 1): fast fading

• `bk: inverse path loss

• φbmk ∈ [0, 2π): phase of specular component

• κbk ∈ [0, 1]: Rician parameter

Normalized mutual information:

I(ρ) =
1

N
log det

(
IN +

1

ρ
HHH

)

I(ρ) = E (I(ρ))

3 Related results
Theorem 1 (Deterministic Equivalent) [2] Under some
mild technical assumptions:

(i) The following set of N + n deterministic equations,

ψi(z) =
1

ρ
(

1 + 1
ntr D̃iT̃(z)

), 1 ≤ i ≤ N

ψ̃j(z) =
1

ρ
(
1 + 1

ntr DjT(z)
), 1 ≤ j ≤ n

where

Ψ(z) = diag (ψi(z), 1 ≤ i ≤ N)

Ψ̃(z) = diag
(
ψ̃j(z), 1 ≤ j ≤ n

)
T(z) =

(
Ψ(z)−1 + ρAΨ̃(z)AH

)−1

T̃(z) =
(
Ψ̃(z)−1 + ρAHΨ(z)A

)−1

admits a unique solution (ψ1(z), . . . , ψN(z),

ψ̃1(z), . . . , ψ̃n(z)) ∈ SN+n for z ∈ C \ R+.

(ii) Let ρ > 0 and consider the quantity:

V (ρ) =
1

N
log det

(
Ψ(−ρ)−1

ρ
+ AΨ̃(−ρ)AH

)
+

1

N
log det

(
Ψ̃(−ρ)−1

ρ

)
− ρ

Nn

∑
i=1,...,N
j=1,...,n

σ2
ijTii(−ρ)T̃jj(−ρ) .

Then, the following holds true:

I(ρ)− V (ρ) −−−−→
N,n→∞

0 .

4 The central limit theorem
Theorem 2 (The CLT)Under some mild technical as-
sumptions, the mutual information I(ρ) satisfies

N

ΘN,n
(I(ρ)− V (ρ))

D−−−−→
N,n→∞

N (0, 1)

where D denotes convergence in distribution and the
asymptotic variance ΘN,n is given as

Θ2
N,n = − log det(J) .

Letting ai, bi ti and t̃i denote respectively the columns
of A, AH, T and T̃, the matrix J takes the following
form:

J =

(
J1 J2

J3 J4

)
where

[J1] k=1,...,n
m=1,...,n

= 1{k,m} −
1

n(1 + δm)2
aH
mTDkTam

[J2] k=1,...,n
m=1,...,N

=
ρ

n
tHmDktm

[J3]k=1,...,N
m=1,...,n

=
ρ

n
t̃HmD̃kt̃m

[J4] k=1,...,N
m=1,...,N

= 1{k,m} −
1

n(1 + δ̃m)2
bH
mT̃D̃kT̃bm

where 1{k,m} = 1 for k = m and zero otherwise.

Remark 4.1 The matrix J can be seen as the Jacobian
of the fundamental equations in Theorem 1 (i). This
simple expression of the asymtptotic variance is expected
to hold for even more involved random matrix models.

5 Outage probability
The CLT can be used to calculate an approximation of
the outage probability:

Pout(R)
4
= Pr(NI(ρ) < R) ≈ 1−Q

(
R−NV (ρ)

ΘN,n

)
where Q(x) is the Gaussian tail function.

6 A cellular example

•B = 3 BSs with M = 2 antennas, i.e. N = 6

•n = {3, 6, 9} UTs uniformly distributed over three cells

•Path loss exponent β = 3.6

• target rate R = n× 3[nats/s/Hz]
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