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ABSTRACT

Recently, methods based on Non-Local Total Variation
(NLTV) minimization have become popular in image pro-
cessing. They play a prominent role in a variety of appli-
cations such as denoising, compressive sensing, and inverse
problems in general. In this work, we extend the NLTV
framework by using some information divergences to build
new sparsity measures for signal recovery. This leads to a
general convex formulation of optimization problems involv-
ing information divergences. We address these problems by
means of fast parallel proximal algorithms. In denoising and
deconvolution examples, our approach is compared withℓ2-
NLTV based approaches. The proposed approach applies to
a variety of other inverse problems.

Index Terms— Divergences, inverse problems, non-local
processing, total variation, convex optimization, proximity
operator, parallel algorithms.

1. INTRODUCTION

The motivation of this work is to investigate the influence
of the choice of the smoothness measure on the performance
of optimization approaches in the context of image recovery.
More generally, we will consider a general class of convex
optimization problems involving discrete information diver-
gences. The purpose of these divergence terms often consists
of enforcing prior knowledge or assumptions about the tar-
get solution. In this context, we are interested in an objective
function having the following form:

x 7→ D(Ax,Bx) (1)

whereD is a function inΓ0(R
P × R

P ), andA andB are
matrices inRP×N . HereΓ0(H) denotes the class of convex
functions defined on a real Hilbert spaceH, taking their val-
ues in] − ∞,+∞], and that are lower-semicontinuous and
proper. The most common assumption on the signal of in-
terestx ∈ R

N is that, by making an appropriate choice of
matricesA andB,Ax andBx are close in the metric induced
byD.

Non-Local Total Variation (NLTV) [1] has been used as
a popular and effective image prior model in regularization-
based imaging problems [2, 3, 4, 5]. It is known to reduce un-
desired staircase effects often present in Total Variation(TV)
results. Indeed, the choice of directions pointed by local gra-
dients is regarded as a drawback of TV prior. To circumvent
this limitation, NLTV is associated with image-driven direc-
tions, i.e. the directions are chosen for each pixel indepen-
dently, based on a similarity score between pixel intensities
in a local neighborhood. In the following, we will consider
generalizations of classicalℓ2-NLTV. The ℓ2-NLTV regular-
ization term is a special case of (1), expressed as

D(Ax,Bx) =

N∑

n=1

‖Anx−Bnx‖ (2)

where ‖ · ‖ is the ℓ2-norm andA =
[
A⊤

1 , . . . , A
⊤
N

]⊤
,

B =
[
B⊤

1 , . . . , B
⊤
N

]⊤
. More specifically, for everyn ∈

{1, . . . , N}, submatrixAn ∈ R
Pn×N has only one non-

zero column, namely itsn-th column is given by a vector
of weights(ω(i))1≤i≤Pn

∈ [0,+∞[Pn . SubmatrixBn has
only one nonzero element in each row, i.e. the nonzero
element in thei-th row is given byω(i). The couple of op-
erators(An, Bn) is chosen adaptively for a given image in
a preprocessing step. The nonzero elements of operatorBn

correspond to components ofx close to itsn-th component
x(n) in terms of some similarity measure. Usually, a patch
based score [6] is considered. In the following, we examine
functions different fromℓ2 for defining NLTV-like measures.
More precisely, we investigate functions within the class of
convex divergences.

Divergences are often used as discrete measures in sig-
nal processing problems [7, 8]. Known examples of these
functions are Kullback-Leibler (KL) [9], Jeffreys-Kullback
(JK) [10], Hellinger (Hel) [11], Chi square [12] andIα di-
vergences. They serve as dissimilarity functions in many in-
formation theoretic models (e.g. in source and channel cod-
ing [13, 14]), data recovery tasks (e.g. image restoration [15,
16] and reconstruction [17]), machine learning (pattern recog-
nition [18] and clustering [19]),... Note that they were used



as local regularization functions [20, 21] for solving inverse
problems. However, to the best of our knowledge, they have
not yet been investigated for building non-local smoothness
measures.

In this work, we propose a proximal optimization method
for NLTV-like regularization involving divergences. We first
address the problem of computing the associated proximity
operators. This contribution enlarges the list of functions the
proximity operator of which is given either by a closed form
expression or is easily computable. Next, we develop an ef-
ficient primal-dual algorithm [22] for the restoration problem
under consideration. Finally, we show experimentally the in-
fluence of various NLTV-like regularization sparsity measures
on the performance of the resulting restoration method.

The remaining of the paper is organized as follows: In
Section 2, we present the general form of the addressed op-
timization problem and introduce the notation used in this
work. In Section 3, we study the proximity operators of a
number of divergences. The considered restoration problem
and our algorithm are then described in Section 4. Simula-
tions are performed in Section 5, showing the good perfor-
mance of the proposed approach. Finally, Section 6 concludes
the paper.

2. OPTIMIZATION PROBLEM

2.1. Problem statement

In the context of inverse problems, we aim at solving prob-
lems of the form:

Problem 2.1

Minimize
x∈R

N
D(Ax,Bx) +

S∑

s=1

Rs(Tsx), (3)

whereD ∈ Γ0(R
P ×R

P ),A ∈ R
P×N andB ∈ R

P×N , and,
for everys ∈ {1, . . . , S}, Rs is a function inΓ0(R

Ks) and
Ts ∈ R

Ks×N .

Note that functions(Rs)1≤s≤S may take+∞ value, e.g.
finite values can be assigned only to nonnegative-valued ar-
guments. Consequently, convex constrained optimization
problems can be viewed as special cases of Problem 2.1. In
such cases, some of the functions(Rs)1≤s≤S are the indica-
tor functions of some nonempty closed convex sets. Recall
that the indicator functionιC of a nonempty closed convex
subsetC of a Hilbert spaceH is defined as

(∀x ∈ H) ιC(x) =

{
0 if x ∈ C

+∞ otherwise.
(4)

2.2. Notation and basic relations

In this paper, we deal with additive information measures of
the form:(
∀p = (p(i))1≤i≤P ∈ R

P
)(
∀q = (q(i))1≤i≤P ∈ R

P
)

D(p, q) =

P∑

i=1

Φ(p(i), q(i)) (5)

whereΦ is defined as follows(
∀(υ, ξ) ∈ R

2
)

Φ(υ, ξ) =





ξ ϕ
(υ
ξ

)
if υ ∈ [0,+∞[ andξ ∈ ]0,+∞[

υ lim
ζ→+∞

ϕ(ζ)

ζ
if υ ∈ ]0,+∞[ andξ = 0

0 if υ = ξ = 0

+∞ otherwise
(6)

andϕ ∈ Γ0(R), ϕ : R → [0,+∞] is twice differentiable on
]0,+∞[. Thus,Φ ∈ Γ0(R

2) is the perspective function [23,
Chapter 3] ofϕ on [0,+∞[× ]0,+∞[. If ϕ is strictly convex
andϕ(1) = ϕ′(1) = 0, thenD belongs to the celebrated class
of ϕ-divergences [24], i.e.
(
∀(p, q) ∈ [0,+∞[

P × [0,+∞[
P )

{
D(p, q) ≥ 0

D(p, q) = 0 ⇔ p = q
(7)

Examples ofϕ-divergences are listed in Table 1.

Divergence ϕ

Kullback-Leibler ϕ(ζ) = ζ ln ζ − ζ + 1
Jeffereys-Kullback ϕ(ζ) = (ζ − 1) ln ζ

Hellinger ϕ(ζ) = ζ + 1− 2
√
ζ

Chi square ϕ(ζ) = (ζ − 1)2

Iα, α ∈]0, 1[ ϕ(ζ) = 1− α+ αζ − ζα

Table 1. Examples ofϕ-divergences

3. PROXIMITY OPERATORS OF DIVERGENCES

Definition Let H be a real Hilbert space endowed with the
norm ‖ · ‖. Let f ∈ Γ0(H). For everyx ∈ H, there ex-
ists a unique minimizer of the functionf + 1

2‖ · −x‖2. This
minimizer is called the proximity operator off at x and it is
denoted byproxfx [25]. In other words,

proxf : H → H : x 7→ argmin
x∈H

f(x) +
1

2
‖x− x‖2. (8)

The proximity operator has played a key role in recent de-
velopments in convex optimization, since it provides a nat-
ural extension of the notion of projection. Indeed, ifC is a



nonempty closed convex subset ofH, thenproxιC reduces to
the projectionPC ontoC. As projection operators, proximity
operators are firmly nonexpansive [26], which is a fundamen-
tal property that guarantees the convergence of fixed point al-
gorithms grounded on their use.

We are mainly concerned with the determination of the
proximity ofD (in this case,H = R

P ×R
P ). The next result

shows that the problem reduces to the determination of the
proximity operator of a real function of two variables.

Proximity operator One of the divergence properties
is that these functions are separable (as defined in (5)).
Hence, the proximity operator ofD, calculated at points
p̄ = (p̄(i))1≤i≤P ∈ R

P andq̄ = (q̄(i))1≤i≤P ∈ R
P , reads

proxD(p̄, q̄) =
(
proxΦ(p̄

(i), q̄(i))
)
1≤i≤P

. (9)

Thus, in the following, we concentrate on the computation
of the proximity operator of a scaled version of the involved
functionΦ ∈ Γ0(R

2).
Let Θ denote a primitive of the functionζ 7→ ζϕ′(ζ−1) on
]0,+∞[ and let

ϑ− : ]0,+∞[ → R : ζ 7→ ϕ′(ζ−1) (10)

ϑ+ : ]0,+∞[ → R : ζ 7→ ϕ(ζ−1)− ζ−1ϕ′(ζ−1). (11)

A first technical result is as follows:

Lemma 3.1 Letγ ∈ ]0,+∞[, let (υ, ξ) ∈ R
2, and define

χ− = inf
{
ζ ∈ ]0,+∞[

∣∣ ϑ−(ζ) < γ−1υ
}

(12)

χ+ = sup
{
ζ ∈ ]0,+∞[

∣∣ ϑ+(ζ) < γ−1ξ
}

(13)

(with the usual conventioninf ∅ = +∞ andsup∅ = −∞).
If χ− 6= +∞, the function

ψ : ]0,+∞[ → R : ζ 7→ ζϕ(ζ−1)−Θ(ζ)+
γ−1υ

2
ζ2−γ−1ξζ

(14)
is strictly convex on]χ−,+∞[. In addition, if

1. χ− 6= +∞ andχ+ 6= −∞
2. limζ→χ−

ζ>χ−

ψ′(ζ) < 0

3. limζ→χ+
ψ′(ζ) > 0

thenψ admits a unique minimizer̂ζ on ]χ−,+∞[, and ζ̂ <
χ+.

Using Lemma 3.1, we obtain the following characterization
of the proximity operator of any scaled version ofΦ:

Proposition 3.2 Let γ ∈ ]0,+∞[ and (υ, ξ) ∈ R
2.

proxγΦ(υ, ξ) ∈ ]0,+∞[
2 if and only if Conditions 1-3 in

Lemma 3.1 are satisfied. When these conditions hold

proxγΦ(υ, ξ) =
(
υ − γ ϑ−(ζ̂), ξ − γ ϑ+(ζ̂)

)
(15)

whereζ̂ < χ+ is the unique minimizer ofψ on ]χ−,+∞[.

The existence of̂ζ being guaranteed, it can be computed by
standard one-dimensional search techniques, which are im-
plementable in parallel. Due to the limited space, the reader
is referred to [27] for further details.

4. APPLICATION TO IMAGE RESTORATION

A common problem in image restoration is to recover an orig-
inal imagex ∈ R

N from an observation vectorz ∈ R
Q,

where
z = Hx+ w, (16)

H ∈ R
Q×N is a linear operator modeling some blur and

w ∈ R
Q is a realization of an additive zero-mean white Gaus-

sian noise. In some instances,x can be estimated fromz
be employing the least squares criterionx 7→ 1

2‖Hx − z‖2.
However, as inverse problems are usually ill-posed, one needs
some prior information aboutx. This additional information
is reflected in the resulting optimization problem by a regu-
larization term, e.g. a NLTV-like term, which serves to con-
trol the smoothness of the estimate. Therefore, the restoration
can be achieved by solving the following convex optimization
problem:

minimize
x∈R

N

1

2λ
‖Hx− z‖2 +D(Ax,Bx) + ιC(x) (17)

whereλ ∈]0,+∞[ is the regularization constant, and the op-
eratorsA andB are chosen as explained in the introduction.
The last termιC constrainsx to belong to the convex set
C = [0, 255]N .
Alternatively, in this paper, we seek to describe the problem
within a set theoretic framework. In several works [28], it was
observed that an upper bound on the data fidelity term allows
us to efficiently restrict the solution to vectorsx such that:

Hx ∈ C ′ =
{
u ∈ R

Q | ‖u− z‖2 ≤ δQσ2
}

(18)

whereδ is a positive constant (usually close to 1) andσ2 is the
noise variance. This leads to the following variant of Prob-
lem (17):

minimize
x∈R

N
D(Ax,Bx) + ιC′(Hx) + ιC(x). (19)

Note that, under technical assumptions, Problem (19) is
equivalent to Problem (17). However the constrained formu-
lation given above is usually considered to be more practical
as the solution is less sensitive to the choice ofδ thanλ [4].

The above problem can be solved using proximal opti-
mization algorithms. Such methods require to compute the
proximity operator of the divergenceD, which has already
been discussed in Section 3, the projection onto theℓ2 ball,
and the projection onto the hypercube[0, 255]N . These two
projections are quite standard. A possible algorithm for solv-
ing Problem (19) is thus the M+LFBF primal-dual algorithm
[22]. The associated iterations are recalled in Algorithm 1,



where at each iterationk, γ[k] is a step-size ande[k] ∈ (RP )2

corresponds to a possible error in the computation of the prox-
imity operators of the divergence term.

Algorithm 1: M+LFBF

Initialization v
[0]
1 ∈ R

P , v
[0]
2 ∈ R

P , v
[0]
3 ∈ R

Q, x[0] ∈ R
N

β =
(
‖A‖2 + ‖B‖2 + ‖H‖2

)1/2

, ε ∈ ]0, 1/(β + 1)[

For k = 0, 1, . . .

γ[k] ∈ [ε, (1− ε)/β]

y
[k]
1 = x[k] − γ[k](A⊤v

[k]
1 +B⊤v

[k]
2 +H⊤v

[k]
3 )

p
[k]
1 = PC(y

[k]
1 )

(y
[k]
2,0, y

[k]
2,1) = (v

[k]
1 , v

[k]
2 ) + γ[k](Ax[k], Bx[k])

(p
[k]
2,0, p

[k]
2,1) = (y

[k]
2,0, y

[k]
2,1)

−γ[k]prox D

γ[k]

(
y
[k]
2,0

γ[k] ,
y
[k]
2,1

γ[k]

)
+ e[k]

(q
[k]
2,0, q

[k]
2,1) = (p

[k]
2,0, p

[k]
2,1) + γ[k](Ap

[k]
1 , Bp

[k]
1 )

(v
[k+1]
1 , v

[k+1]
2 ) = (v

[k]
1 , v

[k]
2 )− (y

[k]
2,0, y

[k]
2,1) + (q

[k]
2,0, q

[k]
2,1)

y
[k]
3 = v

[k]
3 + γ[k]Hx

[k]
3

p
[k]
3 = y

[k]
3 − γ[k]z − γ[k]PC′

(
y
[k]
3

γ[k] − z

)

q
[k]
3 = p

[k]
3 + γ[k]Hp

[k]
1

v
[k+1]
3 = v

[k]
3 − y

[k]
3 + q

[k]
3

q
[k]
1 = p

[k]
1 − γ[k](A⊤p

[k]
2,0 +B⊤p

[k]
2,1 +H⊤p

[k]
3 )

x[k+1] = x[k] − y
[k]
1 + q

[k]
1 .

5. RESULTS

In this section we present the performance of the pro-
posedD-NLTV regularization method on restoration ex-
periments. In particular, the following choices forD are
considered:ℓ2 norm (as usually considered in the literature),
Kullback-Leibler divergence, Hellinger divergence, and Chi
square divergence. In our experiments,x corresponds to
a 150 × 150 angiographic image from the public domain
(www.pcronline.com) (Fig. 1). The observed image is gen-
erated by degrading the original image with a convolution
operatorH, which is equal to identity for the denoising prob-
lem and corresponds to a truncated Gaussian point spread
function with standard deviation1.6 and kernel size3× 3 for
the deconvolution problem. The noise variance is equal to
400 and64 for the image denoising and restoration problems,
respectively. The linear operatorsA andB associated with
NLTV are computed from the TV image result obtained us-
ing the code in [29] withPn ≡ 10. The balance between the
smoothness of the estimate and the data fidelity is controlled
by the parameterδ tuned so as to maximize the Signal-to-
Noise Ratio (SNR). The quality of the results, presented in
Figs 2 and 3, is evaluated in terms of the SNR, the Mean
Absolute Error (MAE), and the Structural Similarity index
(SSIM) [30]. One can observe that the results obtained with

Fig. 1. Original image ”Aniso“.

D-NLTV outperform the standardℓ2-NLTV, for the different
divergences. Some isolated noisy points in the result cor-
responding toℓ2-NLTV prior (Fig. 2c) are visible. These
isolated noisy pixels have been successfully removed when
using divergence based criteria.

(a) Noisy (13.73, 16.04, 0.250) (b) TV (24.55,4.36,0.830)

(c) ℓ2-NLTV (24.88,4.20,0.830) (d) KL-NLTV (25.11,4.12,0.843)

(e) Hel-NLTV (25.09, 4.13, 0.843) (f) Chi-NLTV (25.10,4.12,0.843)

Fig. 2. Denoising problem results (SNR, MAE, SSIM).

6. CONCLUSION

In this paper, we have proposed a convex optimization frame-
work involving various information divergences. We have
provided the expression of the proximity operators of these
divergences, which facilitates the use of these measures inin-



verse problems encountered in signal and image processing.
As a side result, we presented the performance obtained by
employing these divergences as non-local regularity measures
for restoration problems, in the presence of Gaussian noise.

(a) Degraded (19.88, 7.25, 0.605) (b) TV (27.26,3.17,0.885)

(c) ℓ2-NLTV (27.63,3.06,0.888) (d) KL-NLTV (27.77,3.01,0.894)

(e) Hel-NLTV (27.75, 2.99,0.894) (f) Chi-NLTV (27.76, 3.01, 0.894)

Fig. 3. Restoration problem results (SNR, MAE, SSIM).
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