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ABSTRACT Non-Local Total Variation (NLTV) [1] has been used as

.. _apopular and effective image prior model in regularization
Recently, , mthon based on Non-Local Totgl Va”at'orbased imaging problems [2, 3, 4, 5]. It is known to reduce un-
(NLT.V ) minimization have pecome po.pular IN 1MAYEe Pro- yasjred staircase effects often present in Total Varigflaf)
cessing. They play a prominent role_ In a variety of a_pp“'results. Indeed, the choice of directions pointed by local g
cations su_ch as denoising, COMPressive sensing, and Vel Sients is regarded as a drawback of TV prior. To circumvent
problems in general. In this work, we extend the NLTV

) . . . . this limitation, NLTV is associated with image-driven dire
framework by using some information divergences to bUIIdtions, i.e. the directions are chosen for each pixel indepen

new sparsity measures 'for signa'l recovery. This Iegds to é‘ently, based on a similarity score between pixel intessiti
general convex formulation of optimization problems iwol a local neighborhood. In the following, we will consider

ing information divergences. We address these problems ngeneraIizations of classic&-NLTV. The £,-NLTV regular-
means of fast parallel proximal algorithms. In denoisind an ization term is a special case of (1), expressed as

deconvolution examples, our approach is compared fyith

NLTV based approaches. The proposed approach applies to N

a variety of other inverse problems. D(Az,Bz) =Y |[Anz — By 2
n=1

Index Terms— Divergences, inverse problems, non-local
processing, total variation, convex optimization, protym . o |- || is the fy-norm andA = [A],... A%],

operator, parallel algorithms. B = [BlT,...,B]T,]T. More specifically, for evenyh €

1. INTRODUCTION {1,...,N}, submatrixA,, € R*¥ has only one non-

zero column, namely ite-th column is given by a vector

The motivation of this work is to investigate the influenceof weights (w®)i<;<p, € [0,400[. SubmatrixB,, has
of the choice of the smoothness measure on the performan@gly one nonzero element in each row, i.e. the nonzero
of optimization approaches in the context of image recoveryelement in thei-th row is given byw(”. The couple of op-
More generally, we will consider a general class of convexgrators(A,, B,,) is chosen adaptively for a given image in
optimization problems involving discrete information eiv @ preprocessing step. The nonzero elements of opefator
gences. The purpose of these divergence terms often consigprrespond to components ofclose to itsn-th component
of enforcing prior knowledge or assumptions about the tarz!™ in terms of some similarity measure. Usually, a patch
get solution. In this context, we are interested in an object based score [6] is considered. In the following, we examine

function having the following form: functions different fron?, for defining NLTV-like measures.
More precisely, we investigate functions within the clags o
z — D(Ax, Bz) (1) convex divergences.

Divergences are often used as discrete measures in sig-
where D is a function in['((R” x RF), andA and B are  nal processing problems [7, 8]. Known examples of these
matrices inR”*¥, HereT'y(H) denotes the class of convex functions are Kullback-Leibler (KL) [9], Jeffreys-Kullick
functions defined on a real Hilbert spake taking their val-  (JK) [10], Hellinger (Hel) [11], Chi square [12] and, di-
ues in] — oo, +oc], and that are lower-semicontinuous andvergences. They serve as dissimilarity functions in many in
proper. The most common assumption on the signal of information theoretic models (e.g. in source and channel cod-
terestz € RY is that, by making an appropriate choice of ing [13, 14]), data recovery tasks (e.g. image restoratlén [
matricesA andB, AT and B7 are close in the metric induced 16] and reconstruction [17]), machine learning (pattecoge
by D. nition [18] and clustering [19]),... Note that they were dise



as local regularization functions [20, 21] for solving inse  2.2. Notation and basic relations
problems. However, to the best of our knowledge, they hav

not yet been investigated for building non-local smootlsnes?n this paper, we deal with additive information measures of

the form:

measures. o P G P
In this work, we propose a proximal optimization method (vp = (Vr<izp €RY) (Vg = (¢V)1<i<p € RT)

for NLTV-like regularization involving divergences. Wedir P

address the problem of computing the associated proximity D(p,q) = Z <I>(p(’i>,q(i)) (5)

operators. This contribution enlarges the list of funcsitime i=1

proximity operator of which is given either by a closed form

expression or is easily computable. Next, we develop an e here® is defined as follows

ficient primal-dual algorithm [22] for the restoration ptein ( (v.§) € Rz)
under consideration. Finally, we show experimentally the i v .
fluence of various NLTV-like regularization sparsity mesesu § ‘P(g) if v € [0, +oo[ andg € ]0, +oof
on the performance of the resulting restoration method. o)
The remaining of the paper is organized as follows: In®(v,§) = chrfoo ¢ ifv € 0, ool andé =0
Section 2, we present the general form of the addressed op- 0 ifo=£6=0
timization problem and introduce the notation used in this +00 otherwise
work. In Section 3, we study the proximity operators of a (6)

number of divergences. The considered restoration problegind, € I'y(R),¢: R — [0, +0c] is twice differentiable on
and our algorithm are then described in Section 4. Simulary o[, Thus,® € T'o(R2) is the perspective function [23,
tions are performed in Section 5, showing the good perforchapter 3] ofp on [0, +oco[ x 10, +oc0l. If ¢ is strictly convex
mance of the proposed approach. Finally, Section 6 conslud%ndw(l) = ¢/(1) = 0, thenD belongs to the celebrated class

the paper. of ¢-divergences [24], i.e.
(Y(p.q) € [0, +o00[” x [0,+00[")
2. OPTIMIZATION PROBLEM
D(p,q) >0
D _ 0 B (7)
2.1. Problem statement () =0 & p=g¢

In the context of inverse problems, we aim at solving prob-EX""rm:)IE"S ofp-divergences are listed in Table 1.
lems of the form:

| Divergence | © \
Problem 2.1 Kullback-Leibler p(()=CIn¢—-C+1
Jeffereys-Kullback  ¢(¢) = (( —1)In(¢
s Hellinger o) =C+1-2C
Mnélﬂlguze D(Az,Bx) + Z Ry (Tsx), (3) Chi square o(O=(C 12
=1 o€l | oO=1—a+al—C"

whereD € I'o(R” xR”), A € R"”*N andB € R”*¥, and, Table 1. Examples ofo-divergences
for everys € {1,...,S}, R, is a function in['o(R¥+) and
T, € RE XN,

3. PROXIMITY OPERATORS OF DIVERGENCES

Note that functions(R;)1<s<s may take+oo value, e.g.
finite values can be assigned only to nonnegative-valued

guments. Consequently, convex constrained optlmlzatlor;;,[S a unique minimizer of the functiofi+ 1| - —z|2. This
problems can be viewed as SPec'a' cases of Prob_lem 2.1 Rinimizer is called the proximity operator gfatz and it is
such cases, some of the functigif®; )1 <s<s are the indica- denoted byprox ;7 [25]. In other words

tor functions of some nonempty closed convex sets. Recall / ’

that the indicator functions of a nonempty closed convex
subsetC of a Hilbert spacé is defined as

Definition Let H be a real Hilbert space endowed with the
orm|| - ||. Let f € T'o(H). For everyz € H, there ex-

1
prox;: H — H: T~ argmin f(z) + §Hx —Z|%.  (8)
zeH

0 ifccC The proximity operator has played a key role in recent de-
(Vz € H) to(x) = { herwi (4)  velopments in convex optimization, since it provides a nat-
+oo  otherwise. ural extension of the notion of projection. Indeed(ifis a



nonempty closed convex subset#f thenprox, , reducesto The existence of being guaranteed, it can be computed by
the projectiorP- ontoC'. As projection operators, proximity standard one-dimensional search techniques, which are im-
operators are firmly nonexpansive [26], which is a fundamenplementable in parallel. Due to the limited space, the neade

tal property that guarantees the convergence of fixed pbint ais referred to [27] for further details.

gorithms grounded on their use.

We are mainly concerned with the determination of the

proximity of D (in this case{ = R” x R”). The next result

4. APPLICATION TO IMAGE RESTORATION

shows that the problem reduces to the determination of th& common problem in image restoration is to recover an orig-

proximity operator of a real function of two variables.

Proximity operator

p=(p")1<icp € R andg = (7)1<i<p € RF, reads

proxy(p.2) = (proxe (67,77)) . ()

One of the divergence properties
is that these functions are separable (as defined in (S)h
Hence, the proximity operator ob, calculated at points

inal imagez € RY from an observation vector ¢ R©,
where
(16)

€ RO*N s a linear operator modeling some blur and
w € R¥ is a realization of an additive zero-mean white Gaus-
sian noise. In some instances,can be estimated from
be employing the least squares criterion 1||Hz — z|°.
However, as inverse problems are usually ill-posed, ondsee

z=HT+ w,

Thus, in the following, we concentrate on the computatiorfome prior information abodt. This additional information
of the proximity operator of a scaled version of the involvedis reflected in the resulting optimization problem by a regu-

function® e I'g(R?).
Let © denote a primitive of the functiod — (¢’((~1) on
10, +o0[ and let

¥_: ]0,+o0[ = R: ¢ = ¢/ (¢
Dy ]0,+oo[ = R: (s (¢Th) = ¢ (¢CTH).
A first technical result is as follows:

(10)
(11)

Lemma 3.1 Lety € |0, +oc], let (7, €) € R?, and define
x— =inf {¢ € ]0, 400 |V_(¢) <y "D}  (12)
X+ =sup{¢ € ]0,+oo[ | 94(¢) <y "¢} (13)

(with the usual conventiomf @ = +oo andsup @ = —0).
If x_ # +o0, the function

L
b 10,400 = R: (= Cp(¢H)—O(0) + L

U 1=
¢
(14)
is strictly convex omfiy —, +oo[. In addition, if
1. x— # +ocoandy4 # —oo

2. lim¢_y_ 1'(¢) <0
(>x—

3. lime sy, ¢/(¢) >0

then admits a unique minimiz&} onJx_,+oo, andf <
X4

larization term, e.g. a NLTV-like term, which serves to con-
trol the smoothness of the estimate. Therefore, the reéaiora
can be achieved by solving the following convex optimizatio
problem:

minimize

%HHw 2| + D(Az, Bx) + 0(z)  (17)
zeRN

where) €]0, +o0[ is the regularization constant, and the op-
eratorsA and B are chosen as explained in the introduction.
The last term.o constrainse to belong to the convex set
C = [0,255]N.

Alternatively, in this paper, we seek to describe the pnoble
within a set theoretic framework. In several works [28], &sw
observed that an upper bound on the data fidelity term allows
us to efficiently restrict the solution to vectarsuch that:

Hre O ={ueR?||u—z|? <5Qo*} (18)

wheres is a positive constant (usually close to 1) arfds the
noise variance. This leads to the following variant of Prob-
lem (17):

minimize D(Az,Bzx) + 1o/ (Hz) + vo(x).
z€R

(19)

Note that, under technical assumptions, Problem (19) is
equivalent to Problem (17). However the constrained formu-
lation given above is usually considered to be more prdctica

Using Lemma 3.1, we obtain the following characterizationas the solution is less sensitive to the choicé tifan\ [4].

of the proximity operator of any scaled versiondaf

Proposition 3.2 Let v € ]0,+oo] and (7,§) € RZ
prox. ¢ (7, §) € ]O,+oo[2 if and only if Conditions 1-3 in
Lemma 3.1 are satisfied. When these conditions hold

prox,(7,8) = (T—v9_(C),E —79+())  (15)

where5< X+ is the unique minimizer af on)x_, +ool.

The above problem can be solved using proximal opti-
mization algorithms. Such methods require to compute the
proximity operator of the divergencP, which has already
been discussed in Section 3, the projection onto/shieall,
and the projection onto the hyperculge255]". These two
projections are quite standard. A possible algorithm fdw-so
ing Problem (19) is thus the M+LFBF primal-dual algorithm
[22]. The associated iterations are recalled in Algorithm 1



where at each iteratioh, v*! is a step-size and*! € (R”)?
corresponds to a possible error in the computation of the-pro
imity operators of the divergence term.

Algorithm 1: M+LFBF

Initialization
vgo] € RP,’UQO] € RP,’U:[,)O] € RQ z0 ¢ RV
1/2 . . . WA
B= (”A”Q + ||BH2 + HH||2) ,€€10,1/(B+1)] Fig. 1. Original image "Aniso“.
Fork=0,1,...
Akl ¢ [e,(1—¢)/4] D-NLTV outperform the standaré,-NLTV, for the different
yglc] = lFl — K] (ATUE‘C] + BTvg’“] + HTng]) divergences. Some isolated noisy points in the result cor-
p[k] _ Pc(y[k]) responding to/s-NLTV prior (Fig. 2c) are visible. These
1 = 1

isolated noisy pixels have been successfully removed when

(k] K]\ _ ¢, K] (K] (k] (k] (k] ’ _ e
(42,0:92,1) = (v1 ;03 ) + 7" (Az™, Bat™) using divergence based criteria.

,0 7
( [zlf}o PyY) = (ygf(]), ygf]l )

)

k k k k
— (Y (})vyé,]l) + (qé,(]), Q£,]1)

N (a) Noisy (13.73, 16.04,0.250)  (b) TV (24.55,4.36,0.830)
k :ka U ql? k k
AT 4 B T

k k
el = gkl IRy TR

5. RESULTS

In this section we present the performance of the pro
posed D-NLTV regularization method on restoration ex-
periments. In particular, the following choices fér are
considered?, norm (as usually considered in the literature), (€) £2-NLTV (24.88,4.20,0.830)  (d) KL-NLTV (25.11,4.12,0.843)
Kullback-Leibler divergence, Hellinger divergence, anki C
square divergence. In our experimenis corresponds to
a 150 x 150 angiographic image from the public domain
(www.pcronline.com) (Fig. 1). The observed image is gen-
erated by degrading the original image with a convolution
operatorH, which is equal to identity for the denoising prob-
lem and corresponds to a truncated Gaussian point spre
function with standard deviatioh6 and kernel siz8 x 3 for
the deconvolution problem. The noise variance is equal to
400 and64 for the image denoising and restoration problems,
respectively. The linear operators and B associated with
NLTV are computed from the TV image result obtained us-
ing the code in [29] withP,, = 10. The balance between the
smoothness of the estimate and the data fidelity is condrolle
by the parameted tuned so as to maximize the Signal-to- 6. CONCLUSION

Noise Ratio (SNR). The quality of the results, presented inn this paper, we have proposed a convex optimization frame-
Figs 2 and 3, is evaluated in terms of the SNR, the Meamvork involving various information divergences. We have
Absolute Error (MAE), and the Structural Similarity index provided the expression of the proximity operators of these
(SSIM) [30]. One can observe that the results obtained witllivergences, which facilitates the use of these measuigs in

() Hel-NLTV (25.09, 4.13, 0.843) (f) Chi-NLTV (25.10,4.12,0.843)

Fig. 2. Denoising problem results (SNR, MAE, SSIM).



verse problems encountered in signal and image processingg
As a side result, we presented the performance obtained by
employing these divergences as non-local regularity nreasu

for restoration problems, in the presence of Gaussian noise t°l
[10]
[11]
[12]
(a) Degraded (19.88, 7.25,0.605)  (b) TV (27.26,3.17,0.885) (23]
[14]
[15]
[16]
[17]

(c) £2-NLTV (27.63,3.06,0.888)  (d) KL-NLTV (27.77,3.01,0.894)
[18]
[19]
[20]
[21]

(e) Hel-NLTV (27.75, 2.99,0.894) (f) Chi-NLTV (27.76, 3.01, 0.894)
[22]

Fig. 3. Restoration problem results (SNR, MAE, SSIM).
[23]
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